| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A flaw was found in the cookie parsing logic of the libsoup HTTP library, used in GNOME applications and other software. The vulnerability arises when processing the expiration date of cookies, where a specially crafted value can trigger an integer overflow. This may result in undefined behavior, allowing an attacker to bypass cookie expiration logic, causing persistent or unintended cookie behavior. The issue stems from improper validation of large integer inputs during date arithmetic operations within the cookie parsing routines. |
| When using the Grafana Databricks Datasource Plugin,
if Oauth passthrough is enabled on the datasource, and multiple users are using the same datasource at the same time on a single Grafana instance, it could result in
the wrong user identifier being used, and information for which the viewer is not authorized being returned.
This issue affects Grafana Databricks Datasource Plugin: from 1.6.0 before 1.12.0 |
| A flaw was found in the cookie date handling logic of the libsoup HTTP library, widely used by GNOME and other applications for web communication. When processing cookies with specially crafted expiration dates, the library may perform an out-of-bounds memory read. This flaw could result in unintended disclosure of memory contents, potentially exposing sensitive information from the process using libsoup. |
| In the Linux kernel, the following vulnerability has been resolved:
net: netpoll: Initialize UDP checksum field before checksumming
commit f1fce08e63fe ("netpoll: Eliminate redundant assignment") removed
the initialization of the UDP checksum, which was wrong and broke
netpoll IPv6 transmission due to bad checksumming.
udph->check needs to be set before calling csum_ipv6_magic(). |
| In the Linux kernel, the following vulnerability has been resolved:
block: reject bs > ps block devices when THP is disabled
If THP is disabled and when a block device with logical block size >
page size is present, the following null ptr deref panic happens during
boot:
[ [13.2 mK AOSAN: null-ptr-deref in range [0x0000000000000000-0x0000000000K0 0 0[07]
[ 13.017749] RIP: 0010:create_empty_buffers+0x3b/0x380
<snip>
[ 13.025448] Call Trace:
[ 13.025692] <TASK>
[ 13.025895] block_read_full_folio+0x610/0x780
[ 13.026379] ? __pfx_blkdev_get_block+0x10/0x10
[ 13.027008] ? __folio_batch_add_and_move+0x1fa/0x2b0
[ 13.027548] ? __pfx_blkdev_read_folio+0x10/0x10
[ 13.028080] filemap_read_folio+0x9b/0x200
[ 13.028526] ? __pfx_filemap_read_folio+0x10/0x10
[ 13.029030] ? __filemap_get_folio+0x43/0x620
[ 13.029497] do_read_cache_folio+0x155/0x3b0
[ 13.029962] ? __pfx_blkdev_read_folio+0x10/0x10
[ 13.030381] read_part_sector+0xb7/0x2a0
[ 13.030805] read_lba+0x174/0x2c0
<snip>
[ 13.045348] nvme_scan_ns+0x684/0x850 [nvme_core]
[ 13.045858] ? __pfx_nvme_scan_ns+0x10/0x10 [nvme_core]
[ 13.046414] ? _raw_spin_unlock+0x15/0x40
[ 13.046843] ? __switch_to+0x523/0x10a0
[ 13.047253] ? kvm_clock_get_cycles+0x14/0x30
[ 13.047742] ? __pfx_nvme_scan_ns_async+0x10/0x10 [nvme_core]
[ 13.048353] async_run_entry_fn+0x96/0x4f0
[ 13.048787] process_one_work+0x667/0x10a0
[ 13.049219] worker_thread+0x63c/0xf60
As large folio support depends on THP, only allow bs > ps block devices
if THP is enabled. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix race between DIM disable and net_dim()
There's a race between disabling DIM and NAPI callbacks using the dim
pointer on the RQ or SQ.
If NAPI checks the DIM state bit and sees it still set, it assumes
`rq->dim` or `sq->dim` is valid. But if DIM gets disabled right after
that check, the pointer might already be set to NULL, leading to a NULL
pointer dereference in net_dim().
Fix this by calling `synchronize_net()` before freeing the DIM context.
This ensures all in-progress NAPI callbacks are finished before the
pointer is cleared.
Kernel log:
BUG: kernel NULL pointer dereference, address: 0000000000000000
...
RIP: 0010:net_dim+0x23/0x190
...
Call Trace:
<TASK>
? __die+0x20/0x60
? page_fault_oops+0x150/0x3e0
? common_interrupt+0xf/0xa0
? sysvec_call_function_single+0xb/0x90
? exc_page_fault+0x74/0x130
? asm_exc_page_fault+0x22/0x30
? net_dim+0x23/0x190
? mlx5e_poll_ico_cq+0x41/0x6f0 [mlx5_core]
? sysvec_apic_timer_interrupt+0xb/0x90
mlx5e_handle_rx_dim+0x92/0xd0 [mlx5_core]
mlx5e_napi_poll+0x2cd/0xac0 [mlx5_core]
? mlx5e_poll_ico_cq+0xe5/0x6f0 [mlx5_core]
busy_poll_stop+0xa2/0x200
? mlx5e_napi_poll+0x1d9/0xac0 [mlx5_core]
? mlx5e_trigger_irq+0x130/0x130 [mlx5_core]
__napi_busy_loop+0x345/0x3b0
? sysvec_call_function_single+0xb/0x90
? asm_sysvec_call_function_single+0x16/0x20
? sysvec_apic_timer_interrupt+0xb/0x90
? pcpu_free_area+0x1e4/0x2e0
napi_busy_loop+0x11/0x20
xsk_recvmsg+0x10c/0x130
sock_recvmsg+0x44/0x70
__sys_recvfrom+0xbc/0x130
? __schedule+0x398/0x890
__x64_sys_recvfrom+0x20/0x30
do_syscall_64+0x4c/0x100
entry_SYSCALL_64_after_hwframe+0x4b/0x53
...
---[ end trace 0000000000000000 ]---
...
---[ end Kernel panic - not syncing: Fatal exception in interrupt ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: Intel: hda: Use devm_kstrdup() to avoid memleak.
sof_pdata->tplg_filename can have address allocated by kstrdup()
and can be overwritten. Memory leak was detected with kmemleak:
unreferenced object 0xffff88812391ff60 (size 16):
comm "kworker/4:1", pid 161, jiffies 4294802931
hex dump (first 16 bytes):
73 6f 66 2d 68 64 61 2d 67 65 6e 65 72 69 63 00 sof-hda-generic.
backtrace (crc 4bf1675c):
__kmalloc_node_track_caller_noprof+0x49c/0x6b0
kstrdup+0x46/0xc0
hda_machine_select.cold+0x1de/0x12cf [snd_sof_intel_hda_generic]
sof_init_environment+0x16f/0xb50 [snd_sof]
sof_probe_continue+0x45/0x7c0 [snd_sof]
sof_probe_work+0x1e/0x40 [snd_sof]
process_one_work+0x894/0x14b0
worker_thread+0x5e5/0xfb0
kthread+0x39d/0x760
ret_from_fork+0x31/0x70
ret_from_fork_asm+0x1a/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/scheduler: signal scheduled fence when kill job
When an entity from application B is killed, drm_sched_entity_kill()
removes all jobs belonging to that entity through
drm_sched_entity_kill_jobs_work(). If application A's job depends on a
scheduled fence from application B's job, and that fence is not properly
signaled during the killing process, application A's dependency cannot be
cleared.
This leads to application A hanging indefinitely while waiting for a
dependency that will never be resolved. Fix this issue by ensuring that
scheduled fences are properly signaled when an entity is killed, allowing
dependent applications to continue execution. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: vector: Fix context save/restore with xtheadvector
Previously only v0-v7 were correctly saved/restored,
and the context of v8-v31 are damanged.
Correctly save/restore v8-v31 to avoid breaking userspace. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "riscv: Define TASK_SIZE_MAX for __access_ok()"
This reverts commit ad5643cf2f69 ("riscv: Define TASK_SIZE_MAX for
__access_ok()").
This commit changes TASK_SIZE_MAX to be LONG_MAX to optimize access_ok(),
because the previous TASK_SIZE_MAX (default to TASK_SIZE) requires some
computation.
The reasoning was that all user addresses are less than LONG_MAX, and all
kernel addresses are greater than LONG_MAX. Therefore access_ok() can
filter kernel addresses.
Addresses between TASK_SIZE and LONG_MAX are not valid user addresses, but
access_ok() let them pass. That was thought to be okay, because they are
not valid addresses at hardware level.
Unfortunately, one case is missed: get_user_pages_fast() happily accepts
addresses between TASK_SIZE and LONG_MAX. futex(), for instance, uses
get_user_pages_fast(). This causes the problem reported by Robert [1].
Therefore, revert this commit. TASK_SIZE_MAX is changed to the default:
TASK_SIZE.
This unfortunately reduces performance, because TASK_SIZE is more expensive
to compute compared to LONG_MAX. But correctness first, we can think about
optimization later, if required. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: fix runtime constant support for nommu kernels
the `__runtime_fixup_32` function does not handle the case where `val` is
zero correctly (as might occur when patching a nommu kernel and referring
to a physical address below the 4GiB boundary whose upper 32 bits are all
zero) because nothing in the existing logic prevents the code from taking
the `else` branch of both nop-checks and emitting two `nop` instructions.
This leaves random garbage in the register that is supposed to receive the
upper 32 bits of the pointer instead of zero that when combined with the
value for the lower 32 bits yields an invalid pointer and causes a kernel
panic when that pointer is eventually accessed.
The author clearly considered the fact that if the `lui` is converted into
a `nop` that the second instruction needs to be adjusted to become an `li`
instead of an `addi`, hence introducing the `addi_insn_mask` variable, but
didn't follow that logic through fully to the case where the `else` branch
executes. To fix it just adjust the logic to ensure that the second `else`
branch is not taken if the first instruction will be patched to a `nop`. |
| A vulnerability was determined in D-Link DIR-816L 2_06_b09_beta. This issue affects the function soapcgi_main of the file /soap.cgi. This manipulation causes stack-based buffer overflow. It is possible to initiate the attack remotely. The exploit has been publicly disclosed and may be utilized. This vulnerability only affects products that are no longer supported by the maintainer. |
| An issue in Advanced Plugins ultimateimagetool module for PrestaShop before v.2.2.01, allows a remote attacker to escalate privileges and obtain sensitive information via Improper Access Control. |
| An issue has been discovered in GitLab EE affecting all versions from 18.1 before 18.3.6, 18.4 before 18.4.4, and 18.5 before 18.5.2 that, under certain circumstances, could have allowed an attacker to remove Duo flows of another user. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86/xen: Fix cleanup logic in emulation of Xen schedop poll hypercalls
kvm_xen_schedop_poll does a kmalloc_array() when a VM polls the host
for more than one event channel potr (nr_ports > 1).
After the kmalloc_array(), the error paths need to go through the
"out" label, but the call to kvm_read_guest_virt() does not.
[Adjusted commit message. - Paolo] |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: Correct signedness in skb remaining space calculation
Syzkaller reported a bug [1] where sk->sk_forward_alloc can overflow.
When we send data, if an skb exists at the tail of the write queue, the
kernel will attempt to append the new data to that skb. However, the code
that checks for available space in the skb is flawed:
'''
copy = size_goal - skb->len
'''
The types of the variables involved are:
'''
copy: ssize_t (s64 on 64-bit systems)
size_goal: int
skb->len: unsigned int
'''
Due to C's type promotion rules, the signed size_goal is converted to an
unsigned int to match skb->len before the subtraction. The result is an
unsigned int.
When this unsigned int result is then assigned to the s64 copy variable,
it is zero-extended, preserving its non-negative value. Consequently, copy
is always >= 0.
Assume we are sending 2GB of data and size_goal has been adjusted to a
value smaller than skb->len. The subtraction will result in copy holding a
very large positive integer. In the subsequent logic, this large value is
used to update sk->sk_forward_alloc, which can easily cause it to overflow.
The syzkaller reproducer uses TCP_REPAIR to reliably create this
condition. However, this can also occur in real-world scenarios. The
tcp_bound_to_half_wnd() function can also reduce size_goal to a small
value. This would cause the subsequent tcp_wmem_schedule() to set
sk->sk_forward_alloc to a value close to INT_MAX. Further memory
allocation requests would then cause sk_forward_alloc to wrap around and
become negative.
[1]: https://syzkaller.appspot.com/bug?extid=de6565462ab540f50e47 |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: ad1816a: Fix potential NULL pointer deref in snd_card_ad1816a_pnp()
Use pr_warn() instead of dev_warn() when 'pdev' is NULL to avoid a
potential NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/msg_ring: ensure io_kiocb freeing is deferred for RCU
syzbot reports that defer/local task_work adding via msg_ring can hit
a request that has been freed:
CPU: 1 UID: 0 PID: 19356 Comm: iou-wrk-19354 Not tainted 6.16.0-rc4-syzkaller-00108-g17bbde2e1716 #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025
Call Trace:
<TASK>
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xd2/0x2b0 mm/kasan/report.c:521
kasan_report+0x118/0x150 mm/kasan/report.c:634
io_req_local_work_add io_uring/io_uring.c:1184 [inline]
__io_req_task_work_add+0x589/0x950 io_uring/io_uring.c:1252
io_msg_remote_post io_uring/msg_ring.c:103 [inline]
io_msg_data_remote io_uring/msg_ring.c:133 [inline]
__io_msg_ring_data+0x820/0xaa0 io_uring/msg_ring.c:151
io_msg_ring_data io_uring/msg_ring.c:173 [inline]
io_msg_ring+0x134/0xa00 io_uring/msg_ring.c:314
__io_issue_sqe+0x17e/0x4b0 io_uring/io_uring.c:1739
io_issue_sqe+0x165/0xfd0 io_uring/io_uring.c:1762
io_wq_submit_work+0x6e9/0xb90 io_uring/io_uring.c:1874
io_worker_handle_work+0x7cd/0x1180 io_uring/io-wq.c:642
io_wq_worker+0x42f/0xeb0 io_uring/io-wq.c:696
ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
which is supposed to be safe with how requests are allocated. But msg
ring requests alloc and free on their own, and hence must defer freeing
to a sane time.
Add an rcu_head and use kfree_rcu() in both spots where requests are
freed. Only the one in io_msg_tw_complete() is strictly required as it
has been visible on the other ring, but use it consistently in the other
spot as well.
This should not cause any other issues outside of KASAN rightfully
complaining about it. |
| GitLab has remediated an issue in GitLab EE affecting all versions from 18.4 before 18.4.4, and 18.5 before 18.5.2 that could have allowed an authenticated user to gain CSRF tokens by exploiting improper input validation in repository references combined with redirect handling weaknesses. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: rtsn: Fix a null pointer dereference in rtsn_probe()
Add check for the return value of rcar_gen4_ptp_alloc()
to prevent potential null pointer dereference. |