| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| IPv4-in-IPv6 and IPv6-in-IPv6 tunneling (RFC 2473) do not require the validation or verification of the source of a network packet, allowing an attacker to spoof and route arbitrary traffic via an exposed network interface. This is a similar issue to CVE-2020-10136. |
| FFmpeg git-master,N-113007-g8d24a28d06 was discovered to contain a segmentation violation via the component /libavcodec/jpeg2000dec.c. |
| A reachable assertion in FFmpeg git-master commit N-113007-g8d24a28d06 allows attackers to cause a Denial of Service (DoS) via opening a crafted AAC file. |
| Cacti is an open source performance and fault management framework. Due to a flaw in multi-line SNMP result parser, authenticated users can inject malformed OIDs in the response. When processed by ss_net_snmp_disk_io() or ss_net_snmp_disk_bytes(), a part of each OID will be used as a key in an array that is used as part of a system command, causing a command execution vulnerability. This vulnerability is fixed in 1.2.29. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_midi: fix MIDI Streaming descriptor lengths
While the MIDI jacks are configured correctly, and the MIDIStreaming
endpoint descriptors are filled with the correct information,
bNumEmbMIDIJack and bLength are set incorrectly in these descriptors.
This does not matter when the numbers of in and out ports are equal, but
when they differ the host will receive broken descriptors with
uninitialized stack memory leaking into the descriptor for whichever
value is smaller.
The precise meaning of "in" and "out" in the port counts is not clearly
defined and can be confusing. But elsewhere the driver consistently
uses this to match the USB meaning of IN and OUT viewed from the host,
so that "in" ports send data to the host and "out" ports receive data
from it. |
| In the Linux kernel, the following vulnerability has been resolved:
block: don't revert iter for -EIOCBQUEUED
blkdev_read_iter() has a few odd checks, like gating the position and
count adjustment on whether or not the result is bigger-than-or-equal to
zero (where bigger than makes more sense), and not checking the return
value of blkdev_direct_IO() before doing an iov_iter_revert(). The
latter can lead to attempting to revert with a negative value, which
when passed to iov_iter_revert() as an unsigned value will lead to
throwing a WARN_ON() because unroll is bigger than MAX_RW_COUNT.
Be sane and don't revert for -EIOCBQUEUED, like what is done in other
spots. |
| In the Linux kernel, the following vulnerability has been resolved:
landlock: Handle weird files
A corrupted filesystem (e.g. bcachefs) might return weird files.
Instead of throwing a warning and allowing access to such file, treat
them as regular files. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix the warning "__rxe_cleanup+0x12c/0x170 [rdma_rxe]"
The Call Trace is as below:
"
<TASK>
? show_regs.cold+0x1a/0x1f
? __rxe_cleanup+0x12c/0x170 [rdma_rxe]
? __warn+0x84/0xd0
? __rxe_cleanup+0x12c/0x170 [rdma_rxe]
? report_bug+0x105/0x180
? handle_bug+0x46/0x80
? exc_invalid_op+0x19/0x70
? asm_exc_invalid_op+0x1b/0x20
? __rxe_cleanup+0x12c/0x170 [rdma_rxe]
? __rxe_cleanup+0x124/0x170 [rdma_rxe]
rxe_destroy_qp.cold+0x24/0x29 [rdma_rxe]
ib_destroy_qp_user+0x118/0x190 [ib_core]
rdma_destroy_qp.cold+0x43/0x5e [rdma_cm]
rtrs_cq_qp_destroy.cold+0x1d/0x2b [rtrs_core]
rtrs_srv_close_work.cold+0x1b/0x31 [rtrs_server]
process_one_work+0x21d/0x3f0
worker_thread+0x4a/0x3c0
? process_one_work+0x3f0/0x3f0
kthread+0xf0/0x120
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x22/0x30
</TASK>
"
When too many rdma resources are allocated, rxe needs more time to
handle these rdma resources. Sometimes with the current timeout, rxe
can not release the rdma resources correctly.
Compared with other rdma drivers, a bigger timeout is used. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: reject mismatching sum of field_len with set key length
The field length description provides the length of each separated key
field in the concatenation, each field gets rounded up to 32-bits to
calculate the pipapo rule width from pipapo_init(). The set key length
provides the total size of the key aligned to 32-bits.
Register-based arithmetics still allows for combining mismatching set
key length and field length description, eg. set key length 10 and field
description [ 5, 4 ] leading to pipapo width of 12. |
| In the Linux kernel, the following vulnerability has been resolved:
batman-adv: Drop unmanaged ELP metric worker
The ELP worker needs to calculate new metric values for all neighbors
"reachable" over an interface. Some of the used metric sources require
locks which might need to sleep. This sleep is incompatible with the RCU
list iterator used for the recorded neighbors. The initial approach to work
around of this problem was to queue another work item per neighbor and then
run this in a new context.
Even when this solved the RCU vs might_sleep() conflict, it has a major
problems: Nothing was stopping the work item in case it is not needed
anymore - for example because one of the related interfaces was removed or
the batman-adv module was unloaded - resulting in potential invalid memory
accesses.
Directly canceling the metric worker also has various problems:
* cancel_work_sync for a to-be-deactivated interface is called with
rtnl_lock held. But the code in the ELP metric worker also tries to use
rtnl_lock() - which will never return in this case. This also means that
cancel_work_sync would never return because it is waiting for the worker
to finish.
* iterating over the neighbor list for the to-be-deactivated interface is
currently done using the RCU specific methods. Which means that it is
possible to miss items when iterating over it without the associated
spinlock - a behaviour which is acceptable for a periodic metric check
but not for a cleanup routine (which must "stop" all still running
workers)
The better approch is to get rid of the per interface neighbor metric
worker and handle everything in the interface worker. The original problems
are solved by:
* creating a list of neighbors which require new metric information inside
the RCU protected context, gathering the metric according to the new list
outside the RCU protected context
* only use rcu_trylock inside metric gathering code to avoid a deadlock
when the cancel_delayed_work_sync is called in the interface removal code
(which is called with the rtnl_lock held) |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: omap: use threaded IRQ for LCD DMA
When using touchscreen and framebuffer, Nokia 770 crashes easily with:
BUG: scheduling while atomic: irq/144-ads7846/82/0x00010000
Modules linked in: usb_f_ecm g_ether usb_f_rndis u_ether libcomposite configfs omap_udc ohci_omap ohci_hcd
CPU: 0 UID: 0 PID: 82 Comm: irq/144-ads7846 Not tainted 6.12.7-770 #2
Hardware name: Nokia 770
Call trace:
unwind_backtrace from show_stack+0x10/0x14
show_stack from dump_stack_lvl+0x54/0x5c
dump_stack_lvl from __schedule_bug+0x50/0x70
__schedule_bug from __schedule+0x4d4/0x5bc
__schedule from schedule+0x34/0xa0
schedule from schedule_preempt_disabled+0xc/0x10
schedule_preempt_disabled from __mutex_lock.constprop.0+0x218/0x3b4
__mutex_lock.constprop.0 from clk_prepare_lock+0x38/0xe4
clk_prepare_lock from clk_set_rate+0x18/0x154
clk_set_rate from sossi_read_data+0x4c/0x168
sossi_read_data from hwa742_read_reg+0x5c/0x8c
hwa742_read_reg from send_frame_handler+0xfc/0x300
send_frame_handler from process_pending_requests+0x74/0xd0
process_pending_requests from lcd_dma_irq_handler+0x50/0x74
lcd_dma_irq_handler from __handle_irq_event_percpu+0x44/0x130
__handle_irq_event_percpu from handle_irq_event+0x28/0x68
handle_irq_event from handle_level_irq+0x9c/0x170
handle_level_irq from generic_handle_domain_irq+0x2c/0x3c
generic_handle_domain_irq from omap1_handle_irq+0x40/0x8c
omap1_handle_irq from generic_handle_arch_irq+0x28/0x3c
generic_handle_arch_irq from call_with_stack+0x1c/0x24
call_with_stack from __irq_svc+0x94/0xa8
Exception stack(0xc5255da0 to 0xc5255de8)
5da0: 00000001 c22fc620 00000000 00000000 c08384a8 c106fc00 00000000 c240c248
5dc0: c113a600 c3f6ec30 00000001 00000000 c22fc620 c5255df0 c22fc620 c0279a94
5de0: 60000013 ffffffff
__irq_svc from clk_prepare_lock+0x4c/0xe4
clk_prepare_lock from clk_get_rate+0x10/0x74
clk_get_rate from uwire_setup_transfer+0x40/0x180
uwire_setup_transfer from spi_bitbang_transfer_one+0x2c/0x9c
spi_bitbang_transfer_one from spi_transfer_one_message+0x2d0/0x664
spi_transfer_one_message from __spi_pump_transfer_message+0x29c/0x498
__spi_pump_transfer_message from __spi_sync+0x1f8/0x2e8
__spi_sync from spi_sync+0x24/0x40
spi_sync from ads7846_halfd_read_state+0x5c/0x1c0
ads7846_halfd_read_state from ads7846_irq+0x58/0x348
ads7846_irq from irq_thread_fn+0x1c/0x78
irq_thread_fn from irq_thread+0x120/0x228
irq_thread from kthread+0xc8/0xe8
kthread from ret_from_fork+0x14/0x28
As a quick fix, switch to a threaded IRQ which provides a stable system. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: xilinx_uartps: split sysrq handling
lockdep detects the following circular locking dependency:
CPU 0 CPU 1
========================== ============================
cdns_uart_isr() printk()
uart_port_lock(port) console_lock()
cdns_uart_console_write()
if (!port->sysrq)
uart_port_lock(port)
uart_handle_break()
port->sysrq = ...
uart_handle_sysrq_char()
printk()
console_lock()
The fixed commit attempts to avoid this situation by only taking the
port lock in cdns_uart_console_write if port->sysrq unset. However, if
(as shown above) cdns_uart_console_write runs before port->sysrq is set,
then it will try to take the port lock anyway. This may result in a
deadlock.
Fix this by splitting sysrq handling into two parts. We use the prepare
helper under the port lock and defer handling until we release the lock. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "drm/amd/display: Use HW lock mgr for PSR1"
This reverts commit
a2b5a9956269 ("drm/amd/display: Use HW lock mgr for PSR1")
Because it may cause system hang while connect with two edp panel. |
| In the Linux kernel, the following vulnerability has been resolved:
ptp: Ensure info->enable callback is always set
The ioctl and sysfs handlers unconditionally call the ->enable callback.
Not all drivers implement that callback, leading to NULL dereferences.
Example of affected drivers: ptp_s390.c, ptp_vclock.c and ptp_mock.c.
Instead use a dummy callback if no better was specified by the driver. |
| In the Linux kernel, the following vulnerability has been resolved:
ax25: rcu protect dev->ax25_ptr
syzbot found a lockdep issue [1].
We should remove ax25 RTNL dependency in ax25_setsockopt()
This should also fix a variety of possible UAF in ax25.
[1]
WARNING: possible circular locking dependency detected
6.13.0-rc3-syzkaller-00762-g9268abe611b0 #0 Not tainted
------------------------------------------------------
syz.5.1818/12806 is trying to acquire lock:
ffffffff8fcb3988 (rtnl_mutex){+.+.}-{4:4}, at: ax25_setsockopt+0xa55/0xe90 net/ax25/af_ax25.c:680
but task is already holding lock:
ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1618 [inline]
ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: ax25_setsockopt+0x209/0xe90 net/ax25/af_ax25.c:574
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (sk_lock-AF_AX25){+.+.}-{0:0}:
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849
lock_sock_nested+0x48/0x100 net/core/sock.c:3642
lock_sock include/net/sock.h:1618 [inline]
ax25_kill_by_device net/ax25/af_ax25.c:101 [inline]
ax25_device_event+0x24d/0x580 net/ax25/af_ax25.c:146
notifier_call_chain+0x1a5/0x3f0 kernel/notifier.c:85
__dev_notify_flags+0x207/0x400
dev_change_flags+0xf0/0x1a0 net/core/dev.c:9026
dev_ifsioc+0x7c8/0xe70 net/core/dev_ioctl.c:563
dev_ioctl+0x719/0x1340 net/core/dev_ioctl.c:820
sock_do_ioctl+0x240/0x460 net/socket.c:1234
sock_ioctl+0x626/0x8e0 net/socket.c:1339
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:906 [inline]
__se_sys_ioctl+0xf5/0x170 fs/ioctl.c:892
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
-> #0 (rtnl_mutex){+.+.}-{4:4}:
check_prev_add kernel/locking/lockdep.c:3161 [inline]
check_prevs_add kernel/locking/lockdep.c:3280 [inline]
validate_chain+0x18ef/0x5920 kernel/locking/lockdep.c:3904
__lock_acquire+0x1397/0x2100 kernel/locking/lockdep.c:5226
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849
__mutex_lock_common kernel/locking/mutex.c:585 [inline]
__mutex_lock+0x1ac/0xee0 kernel/locking/mutex.c:735
ax25_setsockopt+0xa55/0xe90 net/ax25/af_ax25.c:680
do_sock_setsockopt+0x3af/0x720 net/socket.c:2324
__sys_setsockopt net/socket.c:2349 [inline]
__do_sys_setsockopt net/socket.c:2355 [inline]
__se_sys_setsockopt net/socket.c:2352 [inline]
__x64_sys_setsockopt+0x1ee/0x280 net/socket.c:2352
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(sk_lock-AF_AX25);
lock(rtnl_mutex);
lock(sk_lock-AF_AX25);
lock(rtnl_mutex);
*** DEADLOCK ***
1 lock held by syz.5.1818/12806:
#0: ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1618 [inline]
#0: ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: ax25_setsockopt+0x209/0xe90 net/ax25/af_ax25.c:574
stack backtrace:
CPU: 1 UID: 0 PID: 12806 Comm: syz.5.1818 Not tainted 6.13.0-rc3-syzkaller-00762-g9268abe611b0 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_circular_bug+0x13a/0x1b0 kernel/locking/lockdep.c:2074
check_noncircular+0x36a/0x4a0 kernel/locking/lockdep.c:2206
check_prev_add kernel/locking/lockdep.c:3161 [inline]
check_prevs_add kernel/lockin
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: protect access to buffers with no active references
nilfs_lookup_dirty_data_buffers(), which iterates through the buffers
attached to dirty data folios/pages, accesses the attached buffers without
locking the folios/pages.
For data cache, nilfs_clear_folio_dirty() may be called asynchronously
when the file system degenerates to read only, so
nilfs_lookup_dirty_data_buffers() still has the potential to cause use
after free issues when buffers lose the protection of their dirty state
midway due to this asynchronous clearing and are unintentionally freed by
try_to_free_buffers().
Eliminate this race issue by adjusting the lock section in this function. |
| In the Linux kernel, the following vulnerability has been resolved:
net: let net.core.dev_weight always be non-zero
The following problem was encountered during stability test:
(NULL net_device): NAPI poll function process_backlog+0x0/0x530 \
returned 1, exceeding its budget of 0.
------------[ cut here ]------------
list_add double add: new=ffff88905f746f48, prev=ffff88905f746f48, \
next=ffff88905f746e40.
WARNING: CPU: 18 PID: 5462 at lib/list_debug.c:35 \
__list_add_valid_or_report+0xf3/0x130
CPU: 18 UID: 0 PID: 5462 Comm: ping Kdump: loaded Not tainted 6.13.0-rc7+
RIP: 0010:__list_add_valid_or_report+0xf3/0x130
Call Trace:
? __warn+0xcd/0x250
? __list_add_valid_or_report+0xf3/0x130
enqueue_to_backlog+0x923/0x1070
netif_rx_internal+0x92/0x2b0
__netif_rx+0x15/0x170
loopback_xmit+0x2ef/0x450
dev_hard_start_xmit+0x103/0x490
__dev_queue_xmit+0xeac/0x1950
ip_finish_output2+0x6cc/0x1620
ip_output+0x161/0x270
ip_push_pending_frames+0x155/0x1a0
raw_sendmsg+0xe13/0x1550
__sys_sendto+0x3bf/0x4e0
__x64_sys_sendto+0xdc/0x1b0
do_syscall_64+0x5b/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The reproduction command is as follows:
sysctl -w net.core.dev_weight=0
ping 127.0.0.1
This is because when the napi's weight is set to 0, process_backlog() may
return 0 and clear the NAPI_STATE_SCHED bit of napi->state, causing this
napi to be re-polled in net_rx_action() until __do_softirq() times out.
Since the NAPI_STATE_SCHED bit has been cleared, napi_schedule_rps() can
be retriggered in enqueue_to_backlog(), causing this issue.
Making the napi's weight always non-zero solves this problem.
Triggering this issue requires system-wide admin (setting is
not namespaced). |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: rcar-ep: Fix incorrect variable used when calling devm_request_mem_region()
The rcar_pcie_parse_outbound_ranges() uses the devm_request_mem_region()
macro to request a needed resource. A string variable that lives on the
stack is then used to store a dynamically computed resource name, which
is then passed on as one of the macro arguments. This can lead to
undefined behavior.
Depending on the current contents of the memory, the manifestations of
errors may vary. One possible output may be as follows:
$ cat /proc/iomem
30000000-37ffffff :
38000000-3fffffff :
Sometimes, garbage may appear after the colon.
In very rare cases, if no NULL-terminator is found in memory, the system
might crash because the string iterator will overrun which can lead to
access of unmapped memory above the stack.
Thus, fix this by replacing outbound_name with the name of the previously
requested resource. With the changes applied, the output will be as
follows:
$ cat /proc/iomem
30000000-37ffffff : memory2
38000000-3fffffff : memory3
[kwilczynski: commit log] |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix oops when unload drivers paralleling
When unload hclge driver, it tries to disable sriov first for each
ae_dev node from hnae3_ae_dev_list. If user unloads hns3 driver at
the time, because it removes all the ae_dev nodes, and it may cause
oops.
But we can't simply use hnae3_common_lock for this. Because in the
process flow of pci_disable_sriov(), it will trigger the remove flow
of VF, which will also take hnae3_common_lock.
To fixes it, introduce a new mutex to protect the unload process. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: ti: am65-cpsw: fix freeing IRQ in am65_cpsw_nuss_remove_tx_chns()
When getting the IRQ we use k3_udma_glue_tx_get_irq() which returns
negative error value on error. So not NULL check is not sufficient
to deteremine if IRQ is valid. Check that IRQ is greater then zero
to ensure it is valid.
There is no issue at probe time but at runtime user can invoke
.set_channels which results in the following call chain.
am65_cpsw_set_channels()
am65_cpsw_nuss_update_tx_rx_chns()
am65_cpsw_nuss_remove_tx_chns()
am65_cpsw_nuss_init_tx_chns()
At this point if am65_cpsw_nuss_init_tx_chns() fails due to
k3_udma_glue_tx_get_irq() then tx_chn->irq will be set to a
negative value.
Then, at subsequent .set_channels with higher channel count we
will attempt to free an invalid IRQ in am65_cpsw_nuss_remove_tx_chns()
leading to a kernel warning.
The issue is present in the original commit that introduced this driver,
although there, am65_cpsw_nuss_update_tx_rx_chns() existed as
am65_cpsw_nuss_update_tx_chns(). |