CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
s390/pci: Fix potential double remove of hotplug slot
In commit 6ee600bfbe0f ("s390/pci: remove hotplug slot when releasing the
device") the zpci_exit_slot() was moved from zpci_device_reserved() to
zpci_release_device() with the intention of keeping the hotplug slot
around until the device is actually removed.
Now zpci_release_device() is only called once all references are
dropped. Since the zPCI subsystem only drops its reference once the
device is in the reserved state it follows that zpci_release_device()
must only deal with devices in the reserved state. Despite that it
contains code to tear down from both configured and standby state. For
the standby case this already includes the removal of the hotplug slot
so would cause a double removal if a device was ever removed in
either configured or standby state.
Instead of causing a potential double removal in a case that should
never happen explicitly WARN_ON() if a device in non-reserved state is
released and get rid of the dead code cases. |
In the Linux kernel, the following vulnerability has been resolved:
media: wl128x: Fix atomicity violation in fmc_send_cmd()
Atomicity violation occurs when the fmc_send_cmd() function is executed
simultaneously with the modification of the fmdev->resp_skb value.
Consider a scenario where, after passing the validity check within the
function, a non-null fmdev->resp_skb variable is assigned a null value.
This results in an invalid fmdev->resp_skb variable passing the validity
check. As seen in the later part of the function, skb = fmdev->resp_skb;
when the invalid fmdev->resp_skb passes the check, a null pointer
dereference error may occur at line 478, evt_hdr = (void *)skb->data;
To address this issue, it is recommended to include the validity check of
fmdev->resp_skb within the locked section of the function. This
modification ensures that the value of fmdev->resp_skb does not change
during the validation process, thereby maintaining its validity.
This possible bug is found by an experimental static analysis tool
developed by our team. This tool analyzes the locking APIs
to extract function pairs that can be concurrently executed, and then
analyzes the instructions in the paired functions to identify possible
concurrency bugs including data races and atomicity violations. |
In the Linux kernel, the following vulnerability has been resolved:
s390/cpum_sf: Fix and protect memory allocation of SDBs with mutex
Reservation of the PMU hardware is done at first event creation
and is protected by a pair of mutex_lock() and mutex_unlock().
After reservation of the PMU hardware the memory
required for the PMUs the event is to be installed on is
allocated by allocate_buffers() and alloc_sampling_buffer().
This done outside of the mutex protection.
Without mutex protection two or more concurrent invocations of
perf_event_init() may run in parallel.
This can lead to allocation of Sample Data Blocks (SDBs)
multiple times for the same PMU.
Prevent this and protect memory allocation of SDBs by
mutex. |
In the Linux kernel, the following vulnerability has been resolved:
s390/cpum_sf: Handle CPU hotplug remove during sampling
CPU hotplug remove handling triggers the following function
call sequence:
CPUHP_AP_PERF_S390_SF_ONLINE --> s390_pmu_sf_offline_cpu()
...
CPUHP_AP_PERF_ONLINE --> perf_event_exit_cpu()
The s390 CPUMF sampling CPU hotplug handler invokes:
s390_pmu_sf_offline_cpu()
+--> cpusf_pmu_setup()
+--> setup_pmc_cpu()
+--> deallocate_buffers()
This function de-allocates all sampling data buffers (SDBs) allocated
for that CPU at event initialization. It also clears the
PMU_F_RESERVED bit. The CPU is gone and can not be sampled.
With the event still being active on the removed CPU, the CPU event
hotplug support in kernel performance subsystem triggers the
following function calls on the removed CPU:
perf_event_exit_cpu()
+--> perf_event_exit_cpu_context()
+--> __perf_event_exit_context()
+--> __perf_remove_from_context()
+--> event_sched_out()
+--> cpumsf_pmu_del()
+--> cpumsf_pmu_stop()
+--> hw_perf_event_update()
to stop and remove the event. During removal of the event, the
sampling device driver tries to read out the remaining samples from
the sample data buffers (SDBs). But they have already been freed
(and may have been re-assigned). This may lead to a use after free
situation in which case the samples are most likely invalid. In the
best case the memory has not been reassigned and still contains
valid data.
Remedy this situation and check if the CPU is still in reserved
state (bit PMU_F_RESERVED set). In this case the SDBs have not been
released an contain valid data. This is always the case when
the event is removed (and no CPU hotplug off occured).
If the PMU_F_RESERVED bit is not set, the SDB buffers are gone. |
In the Linux kernel, the following vulnerability has been resolved:
drm/dp_mst: Fix resetting msg rx state after topology removal
If the MST topology is removed during the reception of an MST down reply
or MST up request sideband message, the
drm_dp_mst_topology_mgr::up_req_recv/down_rep_recv states could be reset
from one thread via drm_dp_mst_topology_mgr_set_mst(false), racing with
the reading/parsing of the message from another thread via
drm_dp_mst_handle_down_rep() or drm_dp_mst_handle_up_req(). The race is
possible since the reader/parser doesn't hold any lock while accessing
the reception state. This in turn can lead to a memory corruption in the
reader/parser as described by commit bd2fccac61b4 ("drm/dp_mst: Fix MST
sideband message body length check").
Fix the above by resetting the message reception state if needed before
reading/parsing a message. Another solution would be to hold the
drm_dp_mst_topology_mgr::lock for the whole duration of the message
reception/parsing in drm_dp_mst_handle_down_rep() and
drm_dp_mst_handle_up_req(), however this would require a bigger change.
Since the fix is also needed for stable, opting for the simpler solution
in this patch. |
A NULL pointer dereference in TOTOLINK N600R firmware v4.3.0cu.7866_B2022506 allows attackers to cause a Denial of Service. |
An issue in O-RAN Near Realtime RIC ric-plt-submgr in the J-Release environment, allows remote attackers to cause a denial of service (DoS) via a crafted request to the Subscription Manager API component. |
An issue in pytorch v2.7.0 can lead to a Denial of Service (DoS) when a PyTorch model consists of torch.Tensor.to_sparse() and torch.Tensor.to_dense() and is compiled by Inductor. |
A buffer overflow occurs in pytorch v2.7.0 when a PyTorch model consists of torch.nn.Conv2d, torch.nn.functional.hardshrink, and torch.Tensor.view-torch.mv() and is compiled by Inductor, leading to a Denial of Service (DoS). |
TensorFlow v2.18.0 was discovered to output random results when compiling Embedding, leading to unexpected behavior in the application. |
pytorch v2.8.0 was discovered to contain an integer overflow in the component torch.nan_to_num-.long(). |
Apache Airflow 3 introduced a change to the handling of sensitive information in Connections. The intent was to restrict access to sensitive connection fields to Connection Editing Users, effectively applying a "write-only" model for sensitive values.
In Airflow 3.0.3, this model was unintentionally violated: sensitive connection information could be viewed by users with READ permissions through both the API and the UI. This behavior also bypassed the `AIRFLOW__CORE__HIDE_SENSITIVE_VAR_CONN_FIELDS` configuration option.
This issue does not affect Airflow 2.x, where exposing sensitive information to connection editors was the intended and documented behavior.
Users of Airflow 3.0.3 are advised to upgrade Airflow to >=3.0.4. |
DO NOT USE THIS CVE RECORD. ConsultIDs: none. Reason: This record was withdrawn by its CNA. Further investigation showed that it was not a security issue. Notes: none. |
A vulnerability in the Python-Future 1.0.0 module allows for arbitrary code execution via the unintended import of a file named test.py. When the module is loaded, it automatically imports test.py, if present in the same directory or in the sys.path. This behavior can be exploited by an attacker who has the ability to write files to the server, allowing the execution of arbitrary code. NOTE: Multiple third parties have disputed this issue and stated that it is not a security flaw in python-future and is a documented feature of Python’s import system in the handling of sys.path. |
An issue was discovered in Stormshield Network Security (SNS) before 5.0.1. TPM authentication information could, in some HA use cases, be shared among administrators, which can cause secret sharing. |
An issue in petstore v.1.0.7 allows a remote attacker to execute arbitrary code via the DELETE endpoint |
A security vulnerability has been detected in Campcodes Computer Sales and Inventory System 1.0. Affected by this vulnerability is an unknown functionality of the file /pages/us_edit1.php. The manipulation of the argument ID leads to sql injection. Remote exploitation of the attack is possible. The exploit has been disclosed publicly and may be used. |
A weakness has been identified in itsourcecode Online Clinic Management System 1.0. Affected is an unknown function of the file /details.php?action=post. Executing manipulation of the argument ID can lead to sql injection. The attack may be launched remotely. The exploit has been made available to the public and could be exploited. |
In the Linux kernel, the following vulnerability has been resolved:
mm: hugetlb: independent PMD page table shared count
The folio refcount may be increased unexpectly through try_get_folio() by
caller such as split_huge_pages. In huge_pmd_unshare(), we use refcount
to check whether a pmd page table is shared. The check is incorrect if
the refcount is increased by the above caller, and this can cause the page
table leaked:
BUG: Bad page state in process sh pfn:109324
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x66 pfn:0x109324
flags: 0x17ffff800000000(node=0|zone=2|lastcpupid=0xfffff)
page_type: f2(table)
raw: 017ffff800000000 0000000000000000 0000000000000000 0000000000000000
raw: 0000000000000066 0000000000000000 00000000f2000000 0000000000000000
page dumped because: nonzero mapcount
...
CPU: 31 UID: 0 PID: 7515 Comm: sh Kdump: loaded Tainted: G B 6.13.0-rc2master+ #7
Tainted: [B]=BAD_PAGE
Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
Call trace:
show_stack+0x20/0x38 (C)
dump_stack_lvl+0x80/0xf8
dump_stack+0x18/0x28
bad_page+0x8c/0x130
free_page_is_bad_report+0xa4/0xb0
free_unref_page+0x3cc/0x620
__folio_put+0xf4/0x158
split_huge_pages_all+0x1e0/0x3e8
split_huge_pages_write+0x25c/0x2d8
full_proxy_write+0x64/0xd8
vfs_write+0xcc/0x280
ksys_write+0x70/0x110
__arm64_sys_write+0x24/0x38
invoke_syscall+0x50/0x120
el0_svc_common.constprop.0+0xc8/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x34/0x128
el0t_64_sync_handler+0xc8/0xd0
el0t_64_sync+0x190/0x198
The issue may be triggered by damon, offline_page, page_idle, etc, which
will increase the refcount of page table.
1. The page table itself will be discarded after reporting the
"nonzero mapcount".
2. The HugeTLB page mapped by the page table miss freeing since we
treat the page table as shared and a shared page table will not be
unmapped.
Fix it by introducing independent PMD page table shared count. As
described by comment, pt_index/pt_mm/pt_frag_refcount are used for s390
gmap, x86 pgds and powerpc, pt_share_count is used for x86/arm64/riscv
pmds, so we can reuse the field as pt_share_count. |
In the Linux kernel, the following vulnerability has been resolved:
mm: vmscan: account for free pages to prevent infinite Loop in throttle_direct_reclaim()
The task sometimes continues looping in throttle_direct_reclaim() because
allow_direct_reclaim(pgdat) keeps returning false.
#0 [ffff80002cb6f8d0] __switch_to at ffff8000080095ac
#1 [ffff80002cb6f900] __schedule at ffff800008abbd1c
#2 [ffff80002cb6f990] schedule at ffff800008abc50c
#3 [ffff80002cb6f9b0] throttle_direct_reclaim at ffff800008273550
#4 [ffff80002cb6fa20] try_to_free_pages at ffff800008277b68
#5 [ffff80002cb6fae0] __alloc_pages_nodemask at ffff8000082c4660
#6 [ffff80002cb6fc50] alloc_pages_vma at ffff8000082e4a98
#7 [ffff80002cb6fca0] do_anonymous_page at ffff80000829f5a8
#8 [ffff80002cb6fce0] __handle_mm_fault at ffff8000082a5974
#9 [ffff80002cb6fd90] handle_mm_fault at ffff8000082a5bd4
At this point, the pgdat contains the following two zones:
NODE: 4 ZONE: 0 ADDR: ffff00817fffe540 NAME: "DMA32"
SIZE: 20480 MIN/LOW/HIGH: 11/28/45
VM_STAT:
NR_FREE_PAGES: 359
NR_ZONE_INACTIVE_ANON: 18813
NR_ZONE_ACTIVE_ANON: 0
NR_ZONE_INACTIVE_FILE: 50
NR_ZONE_ACTIVE_FILE: 0
NR_ZONE_UNEVICTABLE: 0
NR_ZONE_WRITE_PENDING: 0
NR_MLOCK: 0
NR_BOUNCE: 0
NR_ZSPAGES: 0
NR_FREE_CMA_PAGES: 0
NODE: 4 ZONE: 1 ADDR: ffff00817fffec00 NAME: "Normal"
SIZE: 8454144 PRESENT: 98304 MIN/LOW/HIGH: 68/166/264
VM_STAT:
NR_FREE_PAGES: 146
NR_ZONE_INACTIVE_ANON: 94668
NR_ZONE_ACTIVE_ANON: 3
NR_ZONE_INACTIVE_FILE: 735
NR_ZONE_ACTIVE_FILE: 78
NR_ZONE_UNEVICTABLE: 0
NR_ZONE_WRITE_PENDING: 0
NR_MLOCK: 0
NR_BOUNCE: 0
NR_ZSPAGES: 0
NR_FREE_CMA_PAGES: 0
In allow_direct_reclaim(), while processing ZONE_DMA32, the sum of
inactive/active file-backed pages calculated in zone_reclaimable_pages()
based on the result of zone_page_state_snapshot() is zero.
Additionally, since this system lacks swap, the calculation of inactive/
active anonymous pages is skipped.
crash> p nr_swap_pages
nr_swap_pages = $1937 = {
counter = 0
}
As a result, ZONE_DMA32 is deemed unreclaimable and skipped, moving on to
the processing of the next zone, ZONE_NORMAL, despite ZONE_DMA32 having
free pages significantly exceeding the high watermark.
The problem is that the pgdat->kswapd_failures hasn't been incremented.
crash> px ((struct pglist_data *) 0xffff00817fffe540)->kswapd_failures
$1935 = 0x0
This is because the node deemed balanced. The node balancing logic in
balance_pgdat() evaluates all zones collectively. If one or more zones
(e.g., ZONE_DMA32) have enough free pages to meet their watermarks, the
entire node is deemed balanced. This causes balance_pgdat() to exit early
before incrementing the kswapd_failures, as it considers the overall
memory state acceptable, even though some zones (like ZONE_NORMAL) remain
under significant pressure.
The patch ensures that zone_reclaimable_pages() includes free pages
(NR_FREE_PAGES) in its calculation when no other reclaimable pages are
available (e.g., file-backed or anonymous pages). This change prevents
zones like ZONE_DMA32, which have sufficient free pages, from being
mistakenly deemed unreclaimable. By doing so, the patch ensures proper
node balancing, avoids masking pressure on other zones like ZONE_NORMAL,
and prevents infinite loops in throttle_direct_reclaim() caused by
allow_direct_reclaim(pgdat) repeatedly returning false.
The kernel hangs due to a task stuck in throttle_direct_reclaim(), caused
by a node being incorrectly deemed balanced despite pressure in certain
zones, such as ZONE_NORMAL. This issue arises from
zone_reclaimable_pages
---truncated--- |