Search

Search Results (310465 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-10617 2025-09-17 6.3 Medium
A weakness has been identified in SourceCodester Online Polling System 1.0. Affected by this vulnerability is an unknown functionality of the file /admin/positions.php. This manipulation of the argument ID causes sql injection. The attack may be initiated remotely. The exploit has been made available to the public and could be exploited.
CVE-2025-10616 2025-09-17 6.3 Medium
A security flaw has been discovered in itsourcecode E-Commerce Website 1.0. Affected is an unknown function of the file /admin/users.php. The manipulation results in unrestricted upload. The attack can be launched remotely. The exploit has been released to the public and may be exploited.
CVE-2025-9714 2 Gnome, Xmlsoft 2 Libxml2, Libxml2 2025-09-17 6.2 Medium
Uncontrolled recursion in XPath evaluation in libxml2 up to and including version 2.9.14 allows a local attacker to cause a stack overflow via crafted expressions. XPath processing functions `xmlXPathRunEval`, `xmlXPathCtxtCompile`, and `xmlXPathEvalExpr` were resetting recursion depth to zero before making potentially recursive calls. When such functions were called recursively this could allow for uncontrolled recursion and lead to a stack overflow. These functions now preserve recursion depth across recursive calls, allowing recursion depth to be controlled.
CVE-2024-38599 1 Linux 1 Linux Kernel 2025-09-17 7.1 High
In the Linux kernel, the following vulnerability has been resolved: jffs2: prevent xattr node from overflowing the eraseblock Add a check to make sure that the requested xattr node size is no larger than the eraseblock minus the cleanmarker. Unlike the usual inode nodes, the xattr nodes aren't split into parts and spread across multiple eraseblocks, which means that a xattr node must not occupy more than one eraseblock. If the requested xattr value is too large, the xattr node can spill onto the next eraseblock, overwriting the nodes and causing errors such as: jffs2: argh. node added in wrong place at 0x0000b050(2) jffs2: nextblock 0x0000a000, expected at 0000b00c jffs2: error: (823) do_verify_xattr_datum: node CRC failed at 0x01e050, read=0xfc892c93, calc=0x000000 jffs2: notice: (823) jffs2_get_inode_nodes: Node header CRC failed at 0x01e00c. {848f,2fc4,0fef511f,59a3d171} jffs2: Node at 0x0000000c with length 0x00001044 would run over the end of the erase block jffs2: Perhaps the file system was created with the wrong erase size? jffs2: jffs2_scan_eraseblock(): Magic bitmask 0x1985 not found at 0x00000010: 0x1044 instead This breaks the filesystem and can lead to KASAN crashes such as: BUG: KASAN: slab-out-of-bounds in jffs2_sum_add_kvec+0x125e/0x15d0 Read of size 4 at addr ffff88802c31e914 by task repro/830 CPU: 0 PID: 830 Comm: repro Not tainted 6.9.0-rc3+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0xc6/0x120 print_report+0xc4/0x620 ? __virt_addr_valid+0x308/0x5b0 kasan_report+0xc1/0xf0 ? jffs2_sum_add_kvec+0x125e/0x15d0 ? jffs2_sum_add_kvec+0x125e/0x15d0 jffs2_sum_add_kvec+0x125e/0x15d0 jffs2_flash_direct_writev+0xa8/0xd0 jffs2_flash_writev+0x9c9/0xef0 ? __x64_sys_setxattr+0xc4/0x160 ? do_syscall_64+0x69/0x140 ? entry_SYSCALL_64_after_hwframe+0x76/0x7e [...] Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CVE-2024-38596 2 Linux, Redhat 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more 2025-09-17 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: af_unix: Fix data races in unix_release_sock/unix_stream_sendmsg A data-race condition has been identified in af_unix. In one data path, the write function unix_release_sock() atomically writes to sk->sk_shutdown using WRITE_ONCE. However, on the reader side, unix_stream_sendmsg() does not read it atomically. Consequently, this issue is causing the following KCSAN splat to occur: BUG: KCSAN: data-race in unix_release_sock / unix_stream_sendmsg write (marked) to 0xffff88867256ddbb of 1 bytes by task 7270 on cpu 28: unix_release_sock (net/unix/af_unix.c:640) unix_release (net/unix/af_unix.c:1050) sock_close (net/socket.c:659 net/socket.c:1421) __fput (fs/file_table.c:422) __fput_sync (fs/file_table.c:508) __se_sys_close (fs/open.c:1559 fs/open.c:1541) __x64_sys_close (fs/open.c:1541) x64_sys_call (arch/x86/entry/syscall_64.c:33) do_syscall_64 (arch/x86/entry/common.c:?) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) read to 0xffff88867256ddbb of 1 bytes by task 989 on cpu 14: unix_stream_sendmsg (net/unix/af_unix.c:2273) __sock_sendmsg (net/socket.c:730 net/socket.c:745) ____sys_sendmsg (net/socket.c:2584) __sys_sendmmsg (net/socket.c:2638 net/socket.c:2724) __x64_sys_sendmmsg (net/socket.c:2753 net/socket.c:2750 net/socket.c:2750) x64_sys_call (arch/x86/entry/syscall_64.c:33) do_syscall_64 (arch/x86/entry/common.c:?) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) value changed: 0x01 -> 0x03 The line numbers are related to commit dd5a440a31fa ("Linux 6.9-rc7"). Commit e1d09c2c2f57 ("af_unix: Fix data races around sk->sk_shutdown.") addressed a comparable issue in the past regarding sk->sk_shutdown. However, it overlooked resolving this particular data path. This patch only offending unix_stream_sendmsg() function, since the other reads seem to be protected by unix_state_lock() as discussed in
CVE-2024-45669 2 Ibm, Linux 2 Security Verify Information Queue, Linux Kernel 2025-09-17 6.5 Medium
IBM Security Verify Information Queue 10.0.5, 10.0.6, 10.0.7, and 10.0.8 could allow a remote user to cause a denial of service due to improper handling of special characters that could lead to uncontrolled resource consumption.
CVE-2024-38592 1 Linux 1 Linux Kernel 2025-09-17 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Init `ddp_comp` with devm_kcalloc() In the case where `conn_routes` is true we allocate an extra slot in the `ddp_comp` array but mtk_drm_crtc_create() never seemed to initialize it in the test case I ran. For me, this caused a later crash when we looped through the array in mtk_drm_crtc_mode_valid(). This showed up for me when I booted with `slub_debug=FZPUA` which poisons the memory initially. Without `slub_debug` I couldn't reproduce, presumably because the later code handles the value being NULL and in most cases (not guaranteed in all cases) the memory the allocator returned started out as 0. It really doesn't hurt to initialize the array with devm_kcalloc() since the array is small and the overhead of initting a handful of elements to 0 is small. In general initting memory to zero is a safer practice and usually it's suggested to only use the non-initting alloc functions if you really need to. Let's switch the function to use an allocation function that zeros the memory. For me, this avoids the crash.
CVE-2024-45671 2 Ibm, Linux 2 Security Verify Information Queue, Linux Kernel 2025-09-17 5.9 Medium
IBM Security Verify Information Queue 10.0.5, 10.0.6, 10.0.7, and 10.0.8 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information.
CVE-2024-38586 2 Linux, Redhat 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more 2025-09-17 7.8 High
In the Linux kernel, the following vulnerability has been resolved: r8169: Fix possible ring buffer corruption on fragmented Tx packets. An issue was found on the RTL8125b when transmitting small fragmented packets, whereby invalid entries were inserted into the transmit ring buffer, subsequently leading to calls to dma_unmap_single() with a null address. This was caused by rtl8169_start_xmit() not noticing changes to nr_frags which may occur when small packets are padded (to work around hardware quirks) in rtl8169_tso_csum_v2(). To fix this, postpone inspecting nr_frags until after any padding has been applied.
CVE-2024-38585 1 Linux 1 Linux Kernel 2025-09-17 7.1 High
In the Linux kernel, the following vulnerability has been resolved: tools/nolibc/stdlib: fix memory error in realloc() Pass user_p_len to memcpy() instead of heap->len to prevent realloc() from copying an extra sizeof(heap) bytes from beyond the allocated region.
CVE-2024-38578 1 Linux 1 Linux Kernel 2025-09-17 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ecryptfs: Fix buffer size for tag 66 packet The 'TAG 66 Packet Format' description is missing the cipher code and checksum fields that are packed into the message packet. As a result, the buffer allocated for the packet is 3 bytes too small and write_tag_66_packet() will write up to 3 bytes past the end of the buffer. Fix this by increasing the size of the allocation so the whole packet will always fit in the buffer. This fixes the below kasan slab-out-of-bounds bug: BUG: KASAN: slab-out-of-bounds in ecryptfs_generate_key_packet_set+0x7d6/0xde0 Write of size 1 at addr ffff88800afbb2a5 by task touch/181 CPU: 0 PID: 181 Comm: touch Not tainted 6.6.13-gnu #1 4c9534092be820851bb687b82d1f92a426598dc6 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2/GNU Guix 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x4c/0x70 print_report+0xc5/0x610 ? ecryptfs_generate_key_packet_set+0x7d6/0xde0 ? kasan_complete_mode_report_info+0x44/0x210 ? ecryptfs_generate_key_packet_set+0x7d6/0xde0 kasan_report+0xc2/0x110 ? ecryptfs_generate_key_packet_set+0x7d6/0xde0 __asan_store1+0x62/0x80 ecryptfs_generate_key_packet_set+0x7d6/0xde0 ? __pfx_ecryptfs_generate_key_packet_set+0x10/0x10 ? __alloc_pages+0x2e2/0x540 ? __pfx_ovl_open+0x10/0x10 [overlay 30837f11141636a8e1793533a02e6e2e885dad1d] ? dentry_open+0x8f/0xd0 ecryptfs_write_metadata+0x30a/0x550 ? __pfx_ecryptfs_write_metadata+0x10/0x10 ? ecryptfs_get_lower_file+0x6b/0x190 ecryptfs_initialize_file+0x77/0x150 ecryptfs_create+0x1c2/0x2f0 path_openat+0x17cf/0x1ba0 ? __pfx_path_openat+0x10/0x10 do_filp_open+0x15e/0x290 ? __pfx_do_filp_open+0x10/0x10 ? __kasan_check_write+0x18/0x30 ? _raw_spin_lock+0x86/0xf0 ? __pfx__raw_spin_lock+0x10/0x10 ? __kasan_check_write+0x18/0x30 ? alloc_fd+0xf4/0x330 do_sys_openat2+0x122/0x160 ? __pfx_do_sys_openat2+0x10/0x10 __x64_sys_openat+0xef/0x170 ? __pfx___x64_sys_openat+0x10/0x10 do_syscall_64+0x60/0xd0 entry_SYSCALL_64_after_hwframe+0x6e/0xd8 RIP: 0033:0x7f00a703fd67 Code: 25 00 00 41 00 3d 00 00 41 00 74 37 64 8b 04 25 18 00 00 00 85 c0 75 5b 44 89 e2 48 89 ee bf 9c ff ff ff b8 01 01 00 00 0f 05 <48> 3d 00 f0 ff ff 0f 87 85 00 00 00 48 83 c4 68 5d 41 5c c3 0f 1f RSP: 002b:00007ffc088e30b0 EFLAGS: 00000246 ORIG_RAX: 0000000000000101 RAX: ffffffffffffffda RBX: 00007ffc088e3368 RCX: 00007f00a703fd67 RDX: 0000000000000941 RSI: 00007ffc088e48d7 RDI: 00000000ffffff9c RBP: 00007ffc088e48d7 R08: 0000000000000001 R09: 0000000000000000 R10: 00000000000001b6 R11: 0000000000000246 R12: 0000000000000941 R13: 0000000000000000 R14: 00007ffc088e48d7 R15: 00007f00a7180040 </TASK> Allocated by task 181: kasan_save_stack+0x2f/0x60 kasan_set_track+0x29/0x40 kasan_save_alloc_info+0x25/0x40 __kasan_kmalloc+0xc5/0xd0 __kmalloc+0x66/0x160 ecryptfs_generate_key_packet_set+0x6d2/0xde0 ecryptfs_write_metadata+0x30a/0x550 ecryptfs_initialize_file+0x77/0x150 ecryptfs_create+0x1c2/0x2f0 path_openat+0x17cf/0x1ba0 do_filp_open+0x15e/0x290 do_sys_openat2+0x122/0x160 __x64_sys_openat+0xef/0x170 do_syscall_64+0x60/0xd0 entry_SYSCALL_64_after_hwframe+0x6e/0xd8
CVE-2024-38572 1 Linux 1 Linux Kernel 2025-09-17 7.1 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix out-of-bound access of qmi_invoke_handler() Currently, there is no terminator entry for ath12k_qmi_msg_handlers hence facing below KASAN warning, ================================================================== BUG: KASAN: global-out-of-bounds in qmi_invoke_handler+0xa4/0x148 Read of size 8 at addr ffffffd00a6428d8 by task kworker/u8:2/1273 CPU: 0 PID: 1273 Comm: kworker/u8:2 Not tainted 5.4.213 #0 Workqueue: qmi_msg_handler qmi_data_ready_work Call trace: dump_backtrace+0x0/0x20c show_stack+0x14/0x1c dump_stack+0xe0/0x138 print_address_description.isra.5+0x30/0x330 __kasan_report+0x16c/0x1bc kasan_report+0xc/0x14 __asan_load8+0xa8/0xb0 qmi_invoke_handler+0xa4/0x148 qmi_handle_message+0x18c/0x1bc qmi_data_ready_work+0x4ec/0x528 process_one_work+0x2c0/0x440 worker_thread+0x324/0x4b8 kthread+0x210/0x228 ret_from_fork+0x10/0x18 The address belongs to the variable: ath12k_mac_mon_status_filter_default+0x4bd8/0xfffffffffffe2300 [ath12k] [...] ================================================================== Add a dummy terminator entry at the end to assist the qmi_invoke_handler() in traversing up to the terminator entry without accessing an out-of-boundary index. Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.0.1-00029-QCAHKSWPL_SILICONZ-1
CVE-2024-38566 1 Linux 1 Linux Kernel 2025-09-17 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix verifier assumptions about socket->sk The verifier assumes that 'sk' field in 'struct socket' is valid and non-NULL when 'socket' pointer itself is trusted and non-NULL. That may not be the case when socket was just created and passed to LSM socket_accept hook. Fix this verifier assumption and adjust tests.
CVE-2024-36963 1 Linux 1 Linux Kernel 2025-09-17 7.8 High
In the Linux kernel, the following vulnerability has been resolved: tracefs: Reset permissions on remount if permissions are options There's an inconsistency with the way permissions are handled in tracefs. Because the permissions are generated when accessed, they default to the root inode's permission if they were never set by the user. If the user sets the permissions, then a flag is set and the permissions are saved via the inode (for tracefs files) or an internal attribute field (for eventfs). But if a remount happens that specify the permissions, all the files that were not changed by the user gets updated, but the ones that were are not. If the user were to remount the file system with a given permission, then all files and directories within that file system should be updated. This can cause security issues if a file's permission was updated but the admin forgot about it. They could incorrectly think that remounting with permissions set would update all files, but miss some. For example: # cd /sys/kernel/tracing # chgrp 1002 current_tracer # ls -l [..] -rw-r----- 1 root root 0 May 1 21:25 buffer_size_kb -rw-r----- 1 root root 0 May 1 21:25 buffer_subbuf_size_kb -r--r----- 1 root root 0 May 1 21:25 buffer_total_size_kb -rw-r----- 1 root lkp 0 May 1 21:25 current_tracer -rw-r----- 1 root root 0 May 1 21:25 dynamic_events -r--r----- 1 root root 0 May 1 21:25 dyn_ftrace_total_info -r--r----- 1 root root 0 May 1 21:25 enabled_functions Where current_tracer now has group "lkp". # mount -o remount,gid=1001 . # ls -l -rw-r----- 1 root tracing 0 May 1 21:25 buffer_size_kb -rw-r----- 1 root tracing 0 May 1 21:25 buffer_subbuf_size_kb -r--r----- 1 root tracing 0 May 1 21:25 buffer_total_size_kb -rw-r----- 1 root lkp 0 May 1 21:25 current_tracer -rw-r----- 1 root tracing 0 May 1 21:25 dynamic_events -r--r----- 1 root tracing 0 May 1 21:25 dyn_ftrace_total_info -r--r----- 1 root tracing 0 May 1 21:25 enabled_functions Everything changed but the "current_tracer". Add a new link list that keeps track of all the tracefs_inodes which has the permission flags that tell if the file/dir should use the root inode's permission or not. Then on remount, clear all the flags so that the default behavior of using the root inode's permission is done for all files and directories.
CVE-2025-57569 1 Tenda 2 F3, F3 Firmware 2025-09-17 5.6 Medium
Tenda F3 V12.01.01.48_multi and after is vulnerable to Buffer Overflow via the portList parameter in /goform/setNAT.
CVE-2025-57570 1 Tenda 2 F3, F3 Firmware 2025-09-17 5.6 Medium
Tenda F3 V12.01.01.48_multi and after is vulnerable to Buffer Overflow via the QosList parameter in goform/setQoS.
CVE-2025-57571 1 Tenda 2 F3, F3 Firmware 2025-09-17 5.6 Medium
Tenda F3 V12.01.01.48_multi and after is vulnerable to Buffer Overflow. via the macFilterList parameter in goform/setNAT.
CVE-2025-57572 1 Tenda 2 F3, F3 Firmware 2025-09-17 5.6 Medium
Tenda F3 V12.01.01.48_multi and after is vulnerable to Buffer Overflow via the onlineList parameter in goform/setParentControl.
CVE-2025-57573 1 Tenda 2 F3, F3 Firmware 2025-09-17 5.6 Medium
Tenda F3 V12.01.01.48_multi and after is vulnerable to Buffer Overflow via the wifiTimeClose parameter in goform/setWifi.
CVE-2025-58447 1 Rathena 1 Rathena 2025-09-17 9.8 Critical
rAthena is an open-source cross-platform massively multiplayer online role playing game (MMORPG) server. Versions prior to commit 2f5248b have a heap-based buffer overflow in the login server, remote attacker to overwrite adjacent session fields by sending a crafted `CA_SSO_LOGIN_REQ` with an oversized token length. This leads to immediate denial of service (crash) and it is possible to achieve remote code execution via heap corruption. Commit 2f5248b fixes the issue.