| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A security flaw has been discovered in lief-project LIEF up to 0.17.1. Affected by this issue is the function Parser::parse_binary of the file src/ELF/Parser.tcc of the component ELF Binary Parser. The manipulation results in null pointer dereference. The attack must be initiated from a local position. The exploit has been released to the public and may be used for attacks. Upgrading to version 0.17.2 can resolve this issue. The patch is identified as 81bd5d7ea0c390563f1c4c017c9019d154802978. It is recommended to upgrade the affected component. |
| In the Linux kernel, the following vulnerability has been resolved:
eth: bnxt: fix kernel panic in the bnxt_get_queue_stats{rx | tx}
When qstats-get operation is executed, callbacks of netdev_stats_ops
are called. The bnxt_get_queue_stats{rx | tx} collect per-queue stats
from sw_stats in the rings.
But {rx | tx | cp}_ring are allocated when the interface is up.
So, these rings are not allocated when the interface is down.
The qstats-get is allowed even if the interface is down. However,
the bnxt_get_queue_stats{rx | tx}() accesses cp_ring and tx_ring
without null check.
So, it needs to avoid accessing rings if the interface is down.
Reproducer:
ip link set $interface down
./cli.py --spec netdev.yaml --dump qstats-get
OR
ip link set $interface down
python ./stats.py
Splat looks like:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 1680fa067 P4D 1680fa067 PUD 16be3b067 PMD 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 0 UID: 0 PID: 1495 Comm: python3 Not tainted 6.14.0-rc4+ #32 5cd0f999d5a15c574ac72b3e4b907341
Hardware name: ASUS System Product Name/PRIME Z690-P D4, BIOS 0603 11/01/2021
RIP: 0010:bnxt_get_queue_stats_rx+0xf/0x70 [bnxt_en]
Code: c6 87 b5 18 00 00 02 eb a2 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44 01
RSP: 0018:ffffabef43cdb7e0 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffffffffc04c8710 RCX: 0000000000000000
RDX: ffffabef43cdb858 RSI: 0000000000000000 RDI: ffff8d504e850000
RBP: ffff8d506c9f9c00 R08: 0000000000000004 R09: ffff8d506bcd901c
R10: 0000000000000015 R11: ffff8d506bcd9000 R12: 0000000000000000
R13: ffffabef43cdb8c0 R14: ffff8d504e850000 R15: 0000000000000000
FS: 00007f2c5462b080(0000) GS:ffff8d575f600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000167fd0000 CR4: 00000000007506f0
PKRU: 55555554
Call Trace:
<TASK>
? __die+0x20/0x70
? page_fault_oops+0x15a/0x460
? sched_balance_find_src_group+0x58d/0xd10
? exc_page_fault+0x6e/0x180
? asm_exc_page_fault+0x22/0x30
? bnxt_get_queue_stats_rx+0xf/0x70 [bnxt_en cdd546fd48563c280cfd30e9647efa420db07bf1]
netdev_nl_stats_by_netdev+0x2b1/0x4e0
? xas_load+0x9/0xb0
? xas_find+0x183/0x1d0
? xa_find+0x8b/0xe0
netdev_nl_qstats_get_dumpit+0xbf/0x1e0
genl_dumpit+0x31/0x90
netlink_dump+0x1a8/0x360 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: l2cap: fix null-ptr-deref in l2cap_chan_timeout
There is a race condition between l2cap_chan_timeout() and
l2cap_chan_del(). When we use l2cap_chan_del() to delete the
channel, the chan->conn will be set to null. But the conn could
be dereferenced again in the mutex_lock() of l2cap_chan_timeout().
As a result the null pointer dereference bug will happen. The
KASAN report triggered by POC is shown below:
[ 472.074580] ==================================================================
[ 472.075284] BUG: KASAN: null-ptr-deref in mutex_lock+0x68/0xc0
[ 472.075308] Write of size 8 at addr 0000000000000158 by task kworker/0:0/7
[ 472.075308]
[ 472.075308] CPU: 0 PID: 7 Comm: kworker/0:0 Not tainted 6.9.0-rc5-00356-g78c0094a146b #36
[ 472.075308] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu4
[ 472.075308] Workqueue: events l2cap_chan_timeout
[ 472.075308] Call Trace:
[ 472.075308] <TASK>
[ 472.075308] dump_stack_lvl+0x137/0x1a0
[ 472.075308] print_report+0x101/0x250
[ 472.075308] ? __virt_addr_valid+0x77/0x160
[ 472.075308] ? mutex_lock+0x68/0xc0
[ 472.075308] kasan_report+0x139/0x170
[ 472.075308] ? mutex_lock+0x68/0xc0
[ 472.075308] kasan_check_range+0x2c3/0x2e0
[ 472.075308] mutex_lock+0x68/0xc0
[ 472.075308] l2cap_chan_timeout+0x181/0x300
[ 472.075308] process_one_work+0x5d2/0xe00
[ 472.075308] worker_thread+0xe1d/0x1660
[ 472.075308] ? pr_cont_work+0x5e0/0x5e0
[ 472.075308] kthread+0x2b7/0x350
[ 472.075308] ? pr_cont_work+0x5e0/0x5e0
[ 472.075308] ? kthread_blkcg+0xd0/0xd0
[ 472.075308] ret_from_fork+0x4d/0x80
[ 472.075308] ? kthread_blkcg+0xd0/0xd0
[ 472.075308] ret_from_fork_asm+0x11/0x20
[ 472.075308] </TASK>
[ 472.075308] ==================================================================
[ 472.094860] Disabling lock debugging due to kernel taint
[ 472.096136] BUG: kernel NULL pointer dereference, address: 0000000000000158
[ 472.096136] #PF: supervisor write access in kernel mode
[ 472.096136] #PF: error_code(0x0002) - not-present page
[ 472.096136] PGD 0 P4D 0
[ 472.096136] Oops: 0002 [#1] PREEMPT SMP KASAN NOPTI
[ 472.096136] CPU: 0 PID: 7 Comm: kworker/0:0 Tainted: G B 6.9.0-rc5-00356-g78c0094a146b #36
[ 472.096136] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu4
[ 472.096136] Workqueue: events l2cap_chan_timeout
[ 472.096136] RIP: 0010:mutex_lock+0x88/0xc0
[ 472.096136] Code: be 08 00 00 00 e8 f8 23 1f fd 4c 89 f7 be 08 00 00 00 e8 eb 23 1f fd 42 80 3c 23 00 74 08 48 88
[ 472.096136] RSP: 0018:ffff88800744fc78 EFLAGS: 00000246
[ 472.096136] RAX: 0000000000000000 RBX: 1ffff11000e89f8f RCX: ffffffff8457c865
[ 472.096136] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffff88800744fc78
[ 472.096136] RBP: 0000000000000158 R08: ffff88800744fc7f R09: 1ffff11000e89f8f
[ 472.096136] R10: dffffc0000000000 R11: ffffed1000e89f90 R12: dffffc0000000000
[ 472.096136] R13: 0000000000000158 R14: ffff88800744fc78 R15: ffff888007405a00
[ 472.096136] FS: 0000000000000000(0000) GS:ffff88806d200000(0000) knlGS:0000000000000000
[ 472.096136] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 472.096136] CR2: 0000000000000158 CR3: 000000000da32000 CR4: 00000000000006f0
[ 472.096136] Call Trace:
[ 472.096136] <TASK>
[ 472.096136] ? __die_body+0x8d/0xe0
[ 472.096136] ? page_fault_oops+0x6b8/0x9a0
[ 472.096136] ? kernelmode_fixup_or_oops+0x20c/0x2a0
[ 472.096136] ? do_user_addr_fault+0x1027/0x1340
[ 472.096136] ? _printk+0x7a/0xa0
[ 472.096136] ? mutex_lock+0x68/0xc0
[ 472.096136] ? add_taint+0x42/0xd0
[ 472.096136] ? exc_page_fault+0x6a/0x1b0
[ 472.096136] ? asm_exc_page_fault+0x26/0x30
[ 472.096136] ? mutex_lock+0x75/0xc0
[ 472.096136] ? mutex_lock+0x88/0xc0
[ 472.096136] ? mutex_lock+0x75/0xc0
[ 472.096136] l2cap_chan_timeo
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: core: reject skb_copy(_expand) for fraglist GSO skbs
SKB_GSO_FRAGLIST skbs must not be linearized, otherwise they become
invalid. Return NULL if such an skb is passed to skb_copy or
skb_copy_expand, in order to prevent a crash on a potential later
call to skb_gso_segment. |
| In the Linux kernel, the following vulnerability has been resolved:
media: coda: Add check for dcoda_iram_alloc
As the coda_iram_alloc may return NULL pointer,
it should be better to check the return value
in order to avoid NULL poineter dereference,
same as the others. |
| In the Linux kernel, the following vulnerability has been resolved:
mtd: lpddr2_nvm: Fix possible null-ptr-deref
It will cause null-ptr-deref when resource_size(add_range) invoked,
if platform_get_resource() returns NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
media: dvb-frontends: dib7090p: fix null-ptr-deref in dib7090p_rw_on_apb()
In dib7090p_rw_on_apb, msg is controlled by user. When msg[0].buf is null and
msg[0].len is zero, former checks on msg[0].buf would be passed. If accessing
msg[0].buf[2] without sanity check, null pointer deref would happen. We add
check on msg[0].len to prevent crash. Similar issue occurs when access
msg[1].buf[0] and msg[1].buf[1].
Similar commit: commit 0ed554fd769a ("media: dvb-usb: az6027: fix null-ptr-deref in az6027_i2c_xfer()") |
| RIOT is an open-source microcontroller operating system, designed to match the requirements of Internet of Things (IoT) devices and other embedded devices. A vulnerability was discovered in the IPv6 fragmentation reassembly implementation of RIOT OS v2025.07. When receiving an fragmented IPv6 packet with fragment offset 0 and an empty payload, the payload pointer is set to NULL. However, the implementation still tries to copy the payload into the reassembly buffer, resulting in a NULL pointer dereference which crashes the OS (DoS). To trigger the vulnerability, the `gnrc_ipv6_ext_frag` module must be enabled and the attacker must be able to send arbitrary IPv6 packets to the victim. RIOT OS v2025.10 fixes the issue. |
| A flaw was found in libssh, a library that implements the SSH protocol. When calculating the session ID during the key exchange (KEX) process, an allocation failure in cryptographic functions may lead to a NULL pointer dereference. This issue can cause the client or server to crash. |
| A NULL pointer dereference flaw was found in the GnuTLS software in _gnutls_figure_common_ciphersuite(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Validate the box size for the snooped cursor
Invalid userspace dma surface copies could potentially overflow
the memcpy from the surface to the snooped image leading to crashes.
To fix it the dimensions of the copybox have to be validated
against the expected size of the snooped cursor. |
| A flaw was found in the FreeRDP used by Anaconda's remote install feature, where a crafted RDP packet could trigger a segmentation fault. This issue causes the service to crash and remain defunct, resulting in a denial of service. It occurs pre-boot and is likely due to a NULL pointer dereference. Rebooting is required to recover the system. |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: fix one NULL pointer dereference in smc_ib_is_sg_need_sync()
BUG: kernel NULL pointer dereference, address: 00000000000002ec
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP PTI
CPU: 28 UID: 0 PID: 343 Comm: kworker/28:1 Kdump: loaded Tainted: G OE 6.17.0-rc2+ #9 NONE
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
Workqueue: smc_hs_wq smc_listen_work [smc]
RIP: 0010:smc_ib_is_sg_need_sync+0x9e/0xd0 [smc]
...
Call Trace:
<TASK>
smcr_buf_map_link+0x211/0x2a0 [smc]
__smc_buf_create+0x522/0x970 [smc]
smc_buf_create+0x3a/0x110 [smc]
smc_find_rdma_v2_device_serv+0x18f/0x240 [smc]
? smc_vlan_by_tcpsk+0x7e/0xe0 [smc]
smc_listen_find_device+0x1dd/0x2b0 [smc]
smc_listen_work+0x30f/0x580 [smc]
process_one_work+0x18c/0x340
worker_thread+0x242/0x360
kthread+0xe7/0x220
ret_from_fork+0x13a/0x160
ret_from_fork_asm+0x1a/0x30
</TASK>
If the software RoCE device is used, ibdev->dma_device is a null pointer.
As a result, the problem occurs. Null pointer detection is added to
prevent problems. |
| In the Linux kernel, the following vulnerability has been resolved:
tee: fix NULL pointer dereference in tee_shm_put
tee_shm_put have NULL pointer dereference:
__optee_disable_shm_cache -->
shm = reg_pair_to_ptr(...);//shm maybe return NULL
tee_shm_free(shm); -->
tee_shm_put(shm);//crash
Add check in tee_shm_put to fix it.
panic log:
Unable to handle kernel paging request at virtual address 0000000000100cca
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=0000002049d07000
[0000000000100cca] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 0000000096000004 [#1] SMP
CPU: 2 PID: 14442 Comm: systemd-sleep Tainted: P OE ------- ----
6.6.0-39-generic #38
Source Version: 938b255f6cb8817c95b0dd5c8c2944acfce94b07
Hardware name: greatwall GW-001Y1A-FTH, BIOS Great Wall BIOS V3.0
10/26/2022
pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : tee_shm_put+0x24/0x188
lr : tee_shm_free+0x14/0x28
sp : ffff001f98f9faf0
x29: ffff001f98f9faf0 x28: ffff0020df543cc0 x27: 0000000000000000
x26: ffff001f811344a0 x25: ffff8000818dac00 x24: ffff800082d8d048
x23: ffff001f850fcd18 x22: 0000000000000001 x21: ffff001f98f9fb88
x20: ffff001f83e76218 x19: ffff001f83e761e0 x18: 000000000000ffff
x17: 303a30303a303030 x16: 0000000000000000 x15: 0000000000000003
x14: 0000000000000001 x13: 0000000000000000 x12: 0101010101010101
x11: 0000000000000001 x10: 0000000000000001 x9 : ffff800080e08d0c
x8 : ffff001f98f9fb88 x7 : 0000000000000000 x6 : 0000000000000000
x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000
x2 : ffff001f83e761e0 x1 : 00000000ffff001f x0 : 0000000000100cca
Call trace:
tee_shm_put+0x24/0x188
tee_shm_free+0x14/0x28
__optee_disable_shm_cache+0xa8/0x108
optee_shutdown+0x28/0x38
platform_shutdown+0x28/0x40
device_shutdown+0x144/0x2b0
kernel_power_off+0x3c/0x80
hibernate+0x35c/0x388
state_store+0x64/0x80
kobj_attr_store+0x14/0x28
sysfs_kf_write+0x48/0x60
kernfs_fop_write_iter+0x128/0x1c0
vfs_write+0x270/0x370
ksys_write+0x6c/0x100
__arm64_sys_write+0x20/0x30
invoke_syscall+0x4c/0x120
el0_svc_common.constprop.0+0x44/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x24/0x88
el0t_64_sync_handler+0x134/0x150
el0t_64_sync+0x14c/0x15 |
| In the Linux kernel, the following vulnerability has been resolved:
net: fec: Fix possible NPD in fec_enet_phy_reset_after_clk_enable()
The function of_phy_find_device may return NULL, so we need to take
care before dereferencing phy_dev. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Fix copy_xstate_to_uabi() to copy init states correctly
When an extended state component is not present in fpstate, but in init
state, the function copies from init_fpstate via copy_feature().
But, dynamic states are not present in init_fpstate because of all-zeros
init states. Then retrieving them from init_fpstate will explode like this:
BUG: kernel NULL pointer dereference, address: 0000000000000000
...
RIP: 0010:memcpy_erms+0x6/0x10
? __copy_xstate_to_uabi_buf+0x381/0x870
fpu_copy_guest_fpstate_to_uabi+0x28/0x80
kvm_arch_vcpu_ioctl+0x14c/0x1460 [kvm]
? __this_cpu_preempt_check+0x13/0x20
? vmx_vcpu_put+0x2e/0x260 [kvm_intel]
kvm_vcpu_ioctl+0xea/0x6b0 [kvm]
? kvm_vcpu_ioctl+0xea/0x6b0 [kvm]
? __fget_light+0xd4/0x130
__x64_sys_ioctl+0xe3/0x910
? debug_smp_processor_id+0x17/0x20
? fpregs_assert_state_consistent+0x27/0x50
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Adjust the 'mask' to zero out the userspace buffer for the features that
are not available both from fpstate and from init_fpstate.
The dynamic features depend on the compacted XSAVE format. Ensure it is
enabled before reading XCOMP_BV in init_fpstate. |
| In the Linux kernel, the following vulnerability has been resolved:
pwm: lpc32xx: Remove handling of PWM channels
Because LPC32xx PWM controllers have only a single output which is
registered as the only PWM device/channel per controller, it is known in
advance that pwm->hwpwm value is always 0. On basis of this fact
simplify the code by removing operations with pwm->hwpwm, there is no
controls which require channel number as input.
Even though I wasn't aware at the time when I forward ported that patch,
this fixes a null pointer dereference as lpc32xx->chip.pwms is NULL
before devm_pwmchip_add() is called. |
| In the Linux kernel, the following vulnerability has been resolved:
iw_cxgb4: Fix potential NULL dereference in c4iw_fill_res_cm_id_entry()
This condition needs to match the previous "if (epcp->state == LISTEN) {"
exactly to avoid a NULL dereference of either "listen_ep" or "ep". The
problem is that "epcp" has been re-assigned so just testing
"if (epcp->state == LISTEN) {" a second time is not sufficient. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Lag, fix failure to cancel delayed bond work
Commit 0d4e8ed139d8 ("net/mlx5: Lag, avoid lockdep warnings")
accidentally removed a call to cancel delayed bond work thus it may
cause queued delay to expire and fall on an already destroyed work
queue.
Fix by restoring the call cancel_delayed_work_sync() before
destroying the workqueue.
This prevents call trace such as this:
[ 329.230417] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 329.231444] #PF: supervisor write access in kernel mode
[ 329.232233] #PF: error_code(0x0002) - not-present page
[ 329.233007] PGD 0 P4D 0
[ 329.233476] Oops: 0002 [#1] SMP
[ 329.234012] CPU: 5 PID: 145 Comm: kworker/u20:4 Tainted: G OE 6.0.0-rc5_mlnx #1
[ 329.235282] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[ 329.236868] Workqueue: mlx5_cmd_0000:08:00.1 cmd_work_handler [mlx5_core]
[ 329.237886] RIP: 0010:_raw_spin_lock+0xc/0x20
[ 329.238585] Code: f0 0f b1 17 75 02 f3 c3 89 c6 e9 6f 3c 5f ff 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 0f 1f 44 00 00 31 c0 ba 01 00 00 00 <f0> 0f b1 17 75 02 f3 c3 89 c6 e9 45 3c 5f ff 0f 1f 44 00 00 0f 1f
[ 329.241156] RSP: 0018:ffffc900001b0e98 EFLAGS: 00010046
[ 329.241940] RAX: 0000000000000000 RBX: ffffffff82374ae0 RCX: 0000000000000000
[ 329.242954] RDX: 0000000000000001 RSI: 0000000000000014 RDI: 0000000000000000
[ 329.243974] RBP: ffff888106ccf000 R08: ffff8881004000c8 R09: ffff888100400000
[ 329.244990] R10: 0000000000000000 R11: ffffffff826669f8 R12: 0000000000002000
[ 329.246009] R13: 0000000000000005 R14: ffff888100aa7ce0 R15: ffff88852ca80000
[ 329.247030] FS: 0000000000000000(0000) GS:ffff88852ca80000(0000) knlGS:0000000000000000
[ 329.248260] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 329.249111] CR2: 0000000000000000 CR3: 000000016d675001 CR4: 0000000000770ee0
[ 329.250133] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 329.251152] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 329.252176] PKRU: 55555554 |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: iscsi_tcp: Check that sock is valid before iscsi_set_param()
The validity of sock should be checked before assignment to avoid incorrect
values. Commit 57569c37f0ad ("scsi: iscsi: iscsi_tcp: Fix null-ptr-deref
while calling getpeername()") introduced this change which may lead to
inconsistent values of tcp_sw_conn->sendpage and conn->datadgst_en.
Fix the issue by moving the position of the assignment. |