| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/vm: Clear the scratch_pt pointer on error
Avoid triggering a dereference of an error pointer on cleanup in
xe_vm_free_scratch() by clearing any scratch_pt error pointer.
(cherry picked from commit 358ee50ab565f3c8ea32480e9d03127a81ba32f8) |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix memory corruption when FW resources change during ifdown
bnxt_set_dflt_rings() assumes that it is always called before any TC has
been created. So it doesn't take bp->num_tc into account and assumes
that it is always 0 or 1.
In the FW resource or capability change scenario, the FW will return
flags in bnxt_hwrm_if_change() that will cause the driver to
reinitialize and call bnxt_cancel_reservations(). This will lead to
bnxt_init_dflt_ring_mode() calling bnxt_set_dflt_rings() and bp->num_tc
may be greater than 1. This will cause bp->tx_ring[] to be sized too
small and cause memory corruption in bnxt_alloc_cp_rings().
Fix it by properly scaling the TX rings by bp->num_tc in the code
paths mentioned above. Add 2 helper functions to determine
bp->tx_nr_rings and bp->tx_nr_rings_per_tc. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: intel-thc-hid: intel-quicki2c: Fix ACPI dsd ICRS/ISUB length
The QuickI2C ACPI _DSD methods return ICRS and ISUB data with a
trailing byte, making the actual length is one more byte than the
structs defined.
It caused stack-out-of-bounds and kernel crash:
kernel: BUG: KASAN: stack-out-of-bounds in quicki2c_acpi_get_dsd_property.constprop.0+0x111/0x1b0 [intel_quicki2c]
kernel: Write of size 12 at addr ffff888106d1f900 by task kworker/u33:2/75
kernel:
kernel: CPU: 3 UID: 0 PID: 75 Comm: kworker/u33:2 Not tainted 6.16.0+ #3 PREEMPT(voluntary)
kernel: Workqueue: async async_run_entry_fn
kernel: Call Trace:
kernel: <TASK>
kernel: dump_stack_lvl+0x76/0xa0
kernel: print_report+0xd1/0x660
kernel: ? __pfx__raw_spin_lock_irqsave+0x10/0x10
kernel: ? __kasan_slab_free+0x5d/0x80
kernel: ? kasan_addr_to_slab+0xd/0xb0
kernel: kasan_report+0xe1/0x120
kernel: ? quicki2c_acpi_get_dsd_property.constprop.0+0x111/0x1b0 [intel_quicki2c]
kernel: ? quicki2c_acpi_get_dsd_property.constprop.0+0x111/0x1b0 [intel_quicki2c]
kernel: kasan_check_range+0x11c/0x200
kernel: __asan_memcpy+0x3b/0x80
kernel: quicki2c_acpi_get_dsd_property.constprop.0+0x111/0x1b0 [intel_quicki2c]
kernel: ? __pfx_quicki2c_acpi_get_dsd_property.constprop.0+0x10/0x10 [intel_quicki2c]
kernel: quicki2c_get_acpi_resources+0x237/0x730 [intel_quicki2c]
[...]
kernel: </TASK>
kernel:
kernel: The buggy address belongs to stack of task kworker/u33:2/75
kernel: and is located at offset 48 in frame:
kernel: quicki2c_get_acpi_resources+0x0/0x730 [intel_quicki2c]
kernel:
kernel: This frame has 3 objects:
kernel: [32, 36) 'hid_desc_addr'
kernel: [48, 59) 'i2c_param'
kernel: [80, 224) 'i2c_config'
ACPI DSD methods return:
\_SB.PC00.THC0.ICRS Buffer 000000003fdc947b 001 Len 0C = 0A 00 80 1A 06 00 00 00 00 00 00 00
\_SB.PC00.THC0.ISUB Buffer 00000000f2fcbdc4 001 Len 91 = 00 00 00 00 00 00 00 00 00 00 00 00
Adding reserved padding to quicki2c_subip_acpi_parameter/config. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: Add error handling for old state CRTC in atomic_disable
Introduce error handling to address an issue where, after a hotplug
event, the cursor continues to update. This situation can lead to a
kernel panic due to accessing the NULL `old_state->crtc`.
E,g.
Unable to handle kernel NULL pointer dereference at virtual address
Call trace:
mtk_crtc_plane_disable+0x24/0x140
mtk_plane_atomic_update+0x8c/0xa8
drm_atomic_helper_commit_planes+0x114/0x2c8
drm_atomic_helper_commit_tail_rpm+0x4c/0x158
commit_tail+0xa0/0x168
drm_atomic_helper_commit+0x110/0x120
drm_atomic_commit+0x8c/0xe0
drm_atomic_helper_update_plane+0xd4/0x128
__setplane_atomic+0xcc/0x110
drm_mode_cursor_common+0x250/0x440
drm_mode_cursor_ioctl+0x44/0x70
drm_ioctl+0x264/0x5d8
__arm64_sys_ioctl+0xd8/0x510
invoke_syscall+0x6c/0xe0
do_el0_svc+0x68/0xe8
el0_svc+0x34/0x60
el0t_64_sync_handler+0x1c/0xf8
el0t_64_sync+0x180/0x188
Adding NULL pointer checks to ensure stability by preventing operations
on an invalid CRTC state. |
| In the Linux kernel, the following vulnerability has been resolved:
fbnic: Move phylink resume out of service_task and into open/close
The fbnic driver was presenting with the following locking assert coming
out of a PM resume:
[ 42.208116][ T164] RTNL: assertion failed at drivers/net/phy/phylink.c (2611)
[ 42.208492][ T164] WARNING: CPU: 1 PID: 164 at drivers/net/phy/phylink.c:2611 phylink_resume+0x190/0x1e0
[ 42.208872][ T164] Modules linked in:
[ 42.209140][ T164] CPU: 1 UID: 0 PID: 164 Comm: bash Not tainted 6.17.0-rc2-virtme #134 PREEMPT(full)
[ 42.209496][ T164] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.17.0-5.fc42 04/01/2014
[ 42.209861][ T164] RIP: 0010:phylink_resume+0x190/0x1e0
[ 42.210057][ T164] Code: 83 e5 01 0f 85 b0 fe ff ff c6 05 1c cd 3e 02 01 90 ba 33 0a 00 00 48 c7 c6 20 3a 1d a5 48 c7 c7 e0 3e 1d a5 e8 21 b8 90 fe 90 <0f> 0b 90 90 e9 86 fe ff ff e8 42 ea 1f ff e9 e2 fe ff ff 48 89 ef
[ 42.210708][ T164] RSP: 0018:ffffc90000affbd8 EFLAGS: 00010296
[ 42.210983][ T164] RAX: 0000000000000000 RBX: ffff8880078d8400 RCX: 0000000000000000
[ 42.211235][ T164] RDX: 0000000000000000 RSI: 1ffffffff4f10938 RDI: 0000000000000001
[ 42.211466][ T164] RBP: 0000000000000000 R08: ffffffffa2ae79ea R09: fffffbfff4b3eb84
[ 42.211707][ T164] R10: 0000000000000003 R11: 0000000000000000 R12: ffff888007ad8000
[ 42.211997][ T164] R13: 0000000000000002 R14: ffff888006a18800 R15: ffffffffa34c59e0
[ 42.212234][ T164] FS: 00007f0dc8e39740(0000) GS:ffff88808f51f000(0000) knlGS:0000000000000000
[ 42.212505][ T164] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 42.212704][ T164] CR2: 00007f0dc8e9fe10 CR3: 000000000b56d003 CR4: 0000000000772ef0
[ 42.213227][ T164] PKRU: 55555554
[ 42.213366][ T164] Call Trace:
[ 42.213483][ T164] <TASK>
[ 42.213565][ T164] __fbnic_pm_attach.isra.0+0x8e/0xa0
[ 42.213725][ T164] pci_reset_function+0x116/0x1d0
[ 42.213895][ T164] reset_store+0xa0/0x100
[ 42.214025][ T164] ? pci_dev_reset_attr_is_visible+0x50/0x50
[ 42.214221][ T164] ? sysfs_file_kobj+0xc1/0x1e0
[ 42.214374][ T164] ? sysfs_kf_write+0x65/0x160
[ 42.214526][ T164] kernfs_fop_write_iter+0x2f8/0x4c0
[ 42.214677][ T164] ? kernfs_vma_page_mkwrite+0x1f0/0x1f0
[ 42.214836][ T164] new_sync_write+0x308/0x6f0
[ 42.214987][ T164] ? __lock_acquire+0x34c/0x740
[ 42.215135][ T164] ? new_sync_read+0x6f0/0x6f0
[ 42.215288][ T164] ? lock_acquire.part.0+0xbc/0x260
[ 42.215440][ T164] ? ksys_write+0xff/0x200
[ 42.215590][ T164] ? perf_trace_sched_switch+0x6d0/0x6d0
[ 42.215742][ T164] vfs_write+0x65e/0xbb0
[ 42.215876][ T164] ksys_write+0xff/0x200
[ 42.215994][ T164] ? __ia32_sys_read+0xc0/0xc0
[ 42.216141][ T164] ? do_user_addr_fault+0x269/0x9f0
[ 42.216292][ T164] ? rcu_is_watching+0x15/0xd0
[ 42.216442][ T164] do_syscall_64+0xbb/0x360
[ 42.216591][ T164] entry_SYSCALL_64_after_hwframe+0x4b/0x53
[ 42.216784][ T164] RIP: 0033:0x7f0dc8ea9986
A bit of digging showed that we were invoking the phylink_resume as a part
of the fbnic_up path when we were enabling the service task while not
holding the RTNL lock. We should be enabling this sooner as a part of the
ndo_open path and then just letting the service task come online later.
This will help to enforce the correct locking and brings the phylink
interface online at the same time as the network interface, instead of at a
later time.
I tested this on QEMU to verify this was working by putting the system to
sleep using "echo mem > /sys/power/state" to put the system to sleep in the
guest and then using the command "system_wakeup" in the QEMU monitor. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: HWS, Fix memory leak in hws_pool_buddy_init error path
In the error path of hws_pool_buddy_init(), the buddy allocator cleanup
doesn't free the allocator structure itself, causing a memory leak.
Add the missing kfree() to properly release all allocated memory. |
| In the Linux kernel, the following vulnerability has been resolved:
trace/fgraph: Fix the warning caused by missing unregister notifier
This warning was triggered during testing on v6.16:
notifier callback ftrace_suspend_notifier_call already registered
WARNING: CPU: 2 PID: 86 at kernel/notifier.c:23 notifier_chain_register+0x44/0xb0
...
Call Trace:
<TASK>
blocking_notifier_chain_register+0x34/0x60
register_ftrace_graph+0x330/0x410
ftrace_profile_write+0x1e9/0x340
vfs_write+0xf8/0x420
? filp_flush+0x8a/0xa0
? filp_close+0x1f/0x30
? do_dup2+0xaf/0x160
ksys_write+0x65/0xe0
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x77/0x7f
When writing to the function_profile_enabled interface, the notifier was
not unregistered after start_graph_tracing failed, causing a warning the
next time function_profile_enabled was written.
Fixed by adding unregister_pm_notifier in the exception path. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/kbuf: fix signedness in this_len calculation
When importing and using buffers, buf->len is considered unsigned.
However, buf->len is converted to signed int when committing. This can
lead to unexpected behavior if the buffer is large enough to be
interpreted as a negative value. Make min_t calculation unsigned. |
| In the Linux kernel, the following vulnerability has been resolved:
perf: Avoid undefined behavior from stopping/starting inactive events
Calling pmu->start()/stop() on perf events in PERF_EVENT_STATE_OFF can
leave event->hw.idx at -1. When PMU drivers later attempt to use this
negative index as a shift exponent in bitwise operations, it leads to UBSAN
shift-out-of-bounds reports.
The issue is a logical flaw in how event groups handle throttling when some
members are intentionally disabled. Based on the analysis and the
reproducer provided by Mark Rutland (this issue on both arm64 and x86-64).
The scenario unfolds as follows:
1. A group leader event is configured with a very aggressive sampling
period (e.g., sample_period = 1). This causes frequent interrupts and
triggers the throttling mechanism.
2. A child event in the same group is created in a disabled state
(.disabled = 1). This event remains in PERF_EVENT_STATE_OFF.
Since it hasn't been scheduled onto the PMU, its event->hw.idx remains
initialized at -1.
3. When throttling occurs, perf_event_throttle_group() and later
perf_event_unthrottle_group() iterate through all siblings, including
the disabled child event.
4. perf_event_throttle()/unthrottle() are called on this inactive child
event, which then call event->pmu->start()/stop().
5. The PMU driver receives the event with hw.idx == -1 and attempts to
use it as a shift exponent. e.g., in macros like PMCNTENSET(idx),
leading to the UBSAN report.
The throttling mechanism attempts to start/stop events that are not
actively scheduled on the hardware.
Move the state check into perf_event_throttle()/perf_event_unthrottle() so
that inactive events are skipped entirely. This ensures only active events
with a valid hw.idx are processed, preventing undefined behavior and
silencing UBSAN warnings. The corrected check ensures true before
proceeding with PMU operations.
The problem can be reproduced with the syzkaller reproducer: |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: Add a null ptr check for dpu_encoder_needs_modeset
The drm_atomic_get_new_connector_state() can return NULL if the
connector is not part of the atomic state. Add a check to prevent
a NULL pointer dereference.
This follows the same pattern used in dpu_encoder_update_topology()
within the same file, which checks for NULL before using conn_state.
Patchwork: https://patchwork.freedesktop.org/patch/665188/ |
| NVIDIA DGX Spark GB10 contains a vulnerability in SROOT firmware, where an attacker could cause improper processing of input data. A successful exploit of this vulnerability might lead to information disclosure or denial of service. |
| NVIDIA DGX Spark GB10 contains a vulnerability in hardware resources where an attacker could tamper with hardware controls. A successful exploit of this vulnerability might lead to information disclosure, data tampering, or denial of service. |
| NVIDIA DGX Spark GB10 contains a vulnerability in SROOT, where an attacker could use privileged access to gain access to SoC protected areas. A successful exploit of this vulnerability might lead to code execution, information disclosure, data tampering, denial of service, or escalation of privileges. |
| NVIDIA DGX Spark GB10 contains a vulnerability in SROOT firmware, where an attacker could cause an out-of-bound write. A successful exploit of this vulnerability might lead to code execution, data tampering, denial of service, information disclosure, or escalation of privileges. |
| NVIDIA DGX Spark GB10 contains a vulnerability in SROOT firmware where an attacker could cause an out-of-bound write. A successful exploit of this vulnerability might lead to code execution, data tampering, denial of service, or escalation of privileges. |
| NVIDIA DGX Spark GB10 contains a vulnerability in OSROOT firmware, where an attacker could cause an invalid memory read. A successful exploit of this vulnerability might lead to denial of service. |
| NVIDIA DGX Spark GB10 contains a vulnerability in SROOT firmware, where an attacker could cause an arbitrary memory read. A successful exploit of this vulnerability might lead to denial of service. |
| NVIDIA DGX Spark GB10 contains a vulnerability in SROOT firmware, where an attacker could cause improper validation of integrity. A successful exploit of this vulnerability might lead to information disclosure. |
| EverShop 2.0.1 allows an unauthenticated user to upload files and create directories within the /api/images endpoint. |
| SingularityCE and SingularityPRO are open source container platforms. Prior to SingularityCE 4.3.5 and SingularityPRO 4.1.11 and 4.3.5, if a user relies on LSM restrictions to prevent malicious operations then, under certain circumstances, an attacker can redirect the LSM label write operation so that it is ineffective. The attacker must cause the user to run a malicious container image that redirects the mount of /proc to the destination of a shared mount, either known to be configured on the target system, or that will be specified by the user when running the container. The attacker must also control the content of the shared mount, for example through another malicious container which also binds it, or as a user with relevant permissions on the host system it is bound from. This vulnerability is fixed in SingularityCE 4.3.5 and SingularityPRO 4.1.11 and 4.3.5. |