CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
net/sched: Make cake_enqueue return NET_XMIT_CN when past buffer_limit
The following setup can trigger a WARNING in htb_activate due to
the condition: !cl->leaf.q->q.qlen
tc qdisc del dev lo root
tc qdisc add dev lo root handle 1: htb default 1
tc class add dev lo parent 1: classid 1:1 \
htb rate 64bit
tc qdisc add dev lo parent 1:1 handle f: \
cake memlimit 1b
ping -I lo -f -c1 -s64 -W0.001 127.0.0.1
This is because the low memlimit leads to a low buffer_limit, which
causes packet dropping. However, cake_enqueue still returns
NET_XMIT_SUCCESS, causing htb_enqueue to call htb_activate with an
empty child qdisc. We should return NET_XMIT_CN when packets are
dropped from the same tin and flow.
I do not believe return value of NET_XMIT_CN is necessary for packet
drops in the case of ack filtering, as that is meant to optimize
performance, not to signal congestion. |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: timer: fix ida_free call while not allocated
In the snd_utimer_create() function, if the kasprintf() function return
NULL, snd_utimer_put_id() will be called, finally use ida_free()
to free the unallocated id 0.
the syzkaller reported the following information:
------------[ cut here ]------------
ida_free called for id=0 which is not allocated.
WARNING: CPU: 1 PID: 1286 at lib/idr.c:592 ida_free+0x1fd/0x2f0 lib/idr.c:592
Modules linked in:
CPU: 1 UID: 0 PID: 1286 Comm: syz-executor164 Not tainted 6.15.8 #3 PREEMPT(lazy)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-4.fc42 04/01/2014
RIP: 0010:ida_free+0x1fd/0x2f0 lib/idr.c:592
Code: f8 fc 41 83 fc 3e 76 69 e8 70 b2 f8 (...)
RSP: 0018:ffffc900007f79c8 EFLAGS: 00010282
RAX: 0000000000000000 RBX: 1ffff920000fef3b RCX: ffffffff872176a5
RDX: ffff88800369d200 RSI: 0000000000000000 RDI: ffff88800369d200
RBP: 0000000000000000 R08: ffffffff87ba60a5 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000002 R14: 0000000000000000 R15: 0000000000000000
FS: 00007f6f1abc1740(0000) GS:ffff8880d76a0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f6f1ad7a784 CR3: 000000007a6e2000 CR4: 00000000000006f0
Call Trace:
<TASK>
snd_utimer_put_id sound/core/timer.c:2043 [inline] [snd_timer]
snd_utimer_create+0x59b/0x6a0 sound/core/timer.c:2184 [snd_timer]
snd_utimer_ioctl_create sound/core/timer.c:2202 [inline] [snd_timer]
__snd_timer_user_ioctl.isra.0+0x724/0x1340 sound/core/timer.c:2287 [snd_timer]
snd_timer_user_ioctl+0x75/0xc0 sound/core/timer.c:2298 [snd_timer]
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl fs/ioctl.c:893 [inline]
__x64_sys_ioctl+0x198/0x200 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0x7b/0x160 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x76/0x7e
[...]
The utimer->id should be set properly before the kasprintf() function,
ensures the snd_utimer_put_id() function will free the allocated id. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: ctnetlink: remove refcounting in expectation dumpers
Same pattern as previous patch: do not keep the expectation object
alive via refcount, only store a cookie value and then use that
as the skip hint for dump resumption.
AFAICS this has the same issue as the one resolved in the conntrack
dumper, when we do
if (!refcount_inc_not_zero(&exp->use))
to increment the refcount, there is a chance that exp == last, which
causes a double-increment of the refcount and subsequent memory leak. |
In the Linux kernel, the following vulnerability has been resolved:
ACPI: APEI: send SIGBUS to current task if synchronous memory error not recovered
If a synchronous error is detected as a result of user-space process
triggering a 2-bit uncorrected error, the CPU will take a synchronous
error exception such as Synchronous External Abort (SEA) on Arm64. The
kernel will queue a memory_failure() work which poisons the related
page, unmaps the page, and then sends a SIGBUS to the process, so that
a system wide panic can be avoided.
However, no memory_failure() work will be queued when abnormal
synchronous errors occur. These errors can include situations like
invalid PA, unexpected severity, no memory failure config support,
invalid GUID section, etc. In such a case, the user-space process will
trigger SEA again. This loop can potentially exceed the platform
firmware threshold or even trigger a kernel hard lockup, leading to a
system reboot.
Fix it by performing a force kill if no memory_failure() work is queued
for synchronous errors.
[ rjw: Changelog edits ] |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: add null check
[WHY]
Prevents null pointer dereferences to enhance function robustness
[HOW]
Adds early null check and return false if invalid. |
In the Linux kernel, the following vulnerability has been resolved:
usb: core: config: Prevent OOB read in SS endpoint companion parsing
usb_parse_ss_endpoint_companion() checks descriptor type before length,
enabling a potentially odd read outside of the buffer size.
Fix this up by checking the size first before looking at any of the
fields in the descriptor. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: qgroup: fix race between quota disable and quota rescan ioctl
There's a race between a task disabling quotas and another running the
rescan ioctl that can result in a use-after-free of qgroup records from
the fs_info->qgroup_tree rbtree.
This happens as follows:
1) Task A enters btrfs_ioctl_quota_rescan() -> btrfs_qgroup_rescan();
2) Task B enters btrfs_quota_disable() and calls
btrfs_qgroup_wait_for_completion(), which does nothing because at that
point fs_info->qgroup_rescan_running is false (it wasn't set yet by
task A);
3) Task B calls btrfs_free_qgroup_config() which starts freeing qgroups
from fs_info->qgroup_tree without taking the lock fs_info->qgroup_lock;
4) Task A enters qgroup_rescan_zero_tracking() which starts iterating
the fs_info->qgroup_tree tree while holding fs_info->qgroup_lock,
but task B is freeing qgroup records from that tree without holding
the lock, resulting in a use-after-free.
Fix this by taking fs_info->qgroup_lock at btrfs_free_qgroup_config().
Also at btrfs_qgroup_rescan() don't start the rescan worker if quotas
were already disabled. |
In the Linux kernel, the following vulnerability has been resolved:
drm/xe/migrate: prevent potential UAF
If we hit the error path, the previous fence (if there is one) has
already been put() prior to this, so doing a fence_wait could lead to
UAF. Tweak the flow to do to the put() until after we do the wait.
(cherry picked from commit 9b7ca35ed28fe5fad86e9d9c24ebd1271e4c9c3e) |
In the Linux kernel, the following vulnerability has been resolved:
fs: Prevent file descriptor table allocations exceeding INT_MAX
When sysctl_nr_open is set to a very high value (for example, 1073741816
as set by systemd), processes attempting to use file descriptors near
the limit can trigger massive memory allocation attempts that exceed
INT_MAX, resulting in a WARNING in mm/slub.c:
WARNING: CPU: 0 PID: 44 at mm/slub.c:5027 __kvmalloc_node_noprof+0x21a/0x288
This happens because kvmalloc_array() and kvmalloc() check if the
requested size exceeds INT_MAX and emit a warning when the allocation is
not flagged with __GFP_NOWARN.
Specifically, when nr_open is set to 1073741816 (0x3ffffff8) and a
process calls dup2(oldfd, 1073741880), the kernel attempts to allocate:
- File descriptor array: 1073741880 * 8 bytes = 8,589,935,040 bytes
- Multiple bitmaps: ~400MB
- Total allocation size: > 8GB (exceeding INT_MAX = 2,147,483,647)
Reproducer:
1. Set /proc/sys/fs/nr_open to 1073741816:
# echo 1073741816 > /proc/sys/fs/nr_open
2. Run a program that uses a high file descriptor:
#include <unistd.h>
#include <sys/resource.h>
int main() {
struct rlimit rlim = {1073741824, 1073741824};
setrlimit(RLIMIT_NOFILE, &rlim);
dup2(2, 1073741880); // Triggers the warning
return 0;
}
3. Observe WARNING in dmesg at mm/slub.c:5027
systemd commit a8b627a introduced automatic bumping of fs.nr_open to the
maximum possible value. The rationale was that systems with memory
control groups (memcg) no longer need separate file descriptor limits
since memory is properly accounted. However, this change overlooked
that:
1. The kernel's allocation functions still enforce INT_MAX as a maximum
size regardless of memcg accounting
2. Programs and tests that legitimately test file descriptor limits can
inadvertently trigger massive allocations
3. The resulting allocations (>8GB) are impractical and will always fail
systemd's algorithm starts with INT_MAX and keeps halving the value
until the kernel accepts it. On most systems, this results in nr_open
being set to 1073741816 (0x3ffffff8), which is just under 1GB of file
descriptors.
While processes rarely use file descriptors near this limit in normal
operation, certain selftests (like
tools/testing/selftests/core/unshare_test.c) and programs that test file
descriptor limits can trigger this issue.
Fix this by adding a check in alloc_fdtable() to ensure the requested
allocation size does not exceed INT_MAX. This causes the operation to
fail with -EMFILE instead of triggering a kernel warning and avoids the
impractical >8GB memory allocation request. |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Validate UAC3 cluster segment descriptors
UAC3 class segment descriptors need to be verified whether their sizes
match with the declared lengths and whether they fit with the
allocated buffer sizes, too. Otherwise malicious firmware may lead to
the unexpected OOB accesses. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Decrement TID on RX peer frag setup error handling
Currently, TID is not decremented before peer cleanup, during error
handling path of ath12k_dp_rx_peer_frag_setup(). This could lead to
out-of-bounds access in peer->rx_tid[].
Hence, add a decrement operation for TID, before peer cleanup to
ensures proper cleanup and prevents out-of-bounds access issues when
the RX peer frag setup fails.
Found during code review. Compile tested only. |
In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Optimize module load time by optimizing PLT/GOT counting
When enabling CONFIG_KASAN, CONFIG_PREEMPT_VOLUNTARY_BUILD and
CONFIG_PREEMPT_VOLUNTARY at the same time, there will be soft deadlock,
the relevant logs are as follows:
rcu: INFO: rcu_sched self-detected stall on CPU
...
Call Trace:
[<900000000024f9e4>] show_stack+0x5c/0x180
[<90000000002482f4>] dump_stack_lvl+0x94/0xbc
[<9000000000224544>] rcu_dump_cpu_stacks+0x1fc/0x280
[<900000000037ac80>] rcu_sched_clock_irq+0x720/0xf88
[<9000000000396c34>] update_process_times+0xb4/0x150
[<90000000003b2474>] tick_nohz_handler+0xf4/0x250
[<9000000000397e28>] __hrtimer_run_queues+0x1d0/0x428
[<9000000000399b2c>] hrtimer_interrupt+0x214/0x538
[<9000000000253634>] constant_timer_interrupt+0x64/0x80
[<9000000000349938>] __handle_irq_event_percpu+0x78/0x1a0
[<9000000000349a78>] handle_irq_event_percpu+0x18/0x88
[<9000000000354c00>] handle_percpu_irq+0x90/0xf0
[<9000000000348c74>] handle_irq_desc+0x94/0xb8
[<9000000001012b28>] handle_cpu_irq+0x68/0xa0
[<9000000001def8c0>] handle_loongarch_irq+0x30/0x48
[<9000000001def958>] do_vint+0x80/0xd0
[<9000000000268a0c>] kasan_mem_to_shadow.part.0+0x2c/0x2a0
[<90000000006344f4>] __asan_load8+0x4c/0x120
[<900000000025c0d0>] module_frob_arch_sections+0x5c8/0x6b8
[<90000000003895f0>] load_module+0x9e0/0x2958
[<900000000038b770>] __do_sys_init_module+0x208/0x2d0
[<9000000001df0c34>] do_syscall+0x94/0x190
[<900000000024d6fc>] handle_syscall+0xbc/0x158
After analysis, this is because the slow speed of loading the amdgpu
module leads to the long time occupation of the cpu and then the soft
deadlock.
When loading a module, module_frob_arch_sections() tries to figure out
the number of PLTs/GOTs that will be needed to handle all the RELAs. It
will call the count_max_entries() to find in an out-of-order date which
counting algorithm has O(n^2) complexity.
To make it faster, we sort the relocation list by info and addend. That
way, to check for a duplicate relocation, it just needs to compare with
the previous entry. This reduces the complexity of the algorithm to O(n
log n), as done in commit d4e0340919fb ("arm64/module: Optimize module
load time by optimizing PLT counting"). This gives sinificant reduction
in module load time for modules with large number of relocations.
After applying this patch, the soft deadlock problem has been solved,
and the kernel starts normally without "Call Trace".
Using the default configuration to test some modules, the results are as
follows:
Module Size
ip_tables 36K
fat 143K
radeon 2.5MB
amdgpu 16MB
Without this patch:
Module Module load time (ms) Count(PLTs/GOTs)
ip_tables 18 59/6
fat 0 162/14
radeon 54 1221/84
amdgpu 1411 4525/1098
With this patch:
Module Module load time (ms) Count(PLTs/GOTs)
ip_tables 18 59/6
fat 0 162/14
radeon 22 1221/84
amdgpu 45 4525/1098 |
In the Linux kernel, the following vulnerability has been resolved:
mm/mremap: fix WARN with uffd that has remap events disabled
Registering userfaultd on a VMA that spans at least one PMD and then
mremap()'ing that VMA can trigger a WARN when recovering from a failed
page table move due to a page table allocation error.
The code ends up doing the right thing (recurse, avoiding moving actual
page tables), but triggering that WARN is unpleasant:
WARNING: CPU: 2 PID: 6133 at mm/mremap.c:357 move_normal_pmd mm/mremap.c:357 [inline]
WARNING: CPU: 2 PID: 6133 at mm/mremap.c:357 move_pgt_entry mm/mremap.c:595 [inline]
WARNING: CPU: 2 PID: 6133 at mm/mremap.c:357 move_page_tables+0x3832/0x44a0 mm/mremap.c:852
Modules linked in:
CPU: 2 UID: 0 PID: 6133 Comm: syz.0.19 Not tainted 6.17.0-rc1-syzkaller-00004-g53e760d89498 #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:move_normal_pmd mm/mremap.c:357 [inline]
RIP: 0010:move_pgt_entry mm/mremap.c:595 [inline]
RIP: 0010:move_page_tables+0x3832/0x44a0 mm/mremap.c:852
Code: ...
RSP: 0018:ffffc900037a76d8 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000032930007 RCX: ffffffff820c6645
RDX: ffff88802e56a440 RSI: ffffffff820c7201 RDI: 0000000000000007
RBP: ffff888037728fc0 R08: 0000000000000007 R09: 0000000000000000
R10: 0000000032930007 R11: 0000000000000000 R12: 0000000000000000
R13: ffffc900037a79a8 R14: 0000000000000001 R15: dffffc0000000000
FS: 000055556316a500(0000) GS:ffff8880d68bc000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000001b30863fff CR3: 0000000050171000 CR4: 0000000000352ef0
Call Trace:
<TASK>
copy_vma_and_data+0x468/0x790 mm/mremap.c:1215
move_vma+0x548/0x1780 mm/mremap.c:1282
mremap_to+0x1b7/0x450 mm/mremap.c:1406
do_mremap+0xfad/0x1f80 mm/mremap.c:1921
__do_sys_mremap+0x119/0x170 mm/mremap.c:1977
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0x4c0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f00d0b8ebe9
Code: ...
RSP: 002b:00007ffe5ea5ee98 EFLAGS: 00000246 ORIG_RAX: 0000000000000019
RAX: ffffffffffffffda RBX: 00007f00d0db5fa0 RCX: 00007f00d0b8ebe9
RDX: 0000000000400000 RSI: 0000000000c00000 RDI: 0000200000000000
RBP: 00007ffe5ea5eef0 R08: 0000200000c00000 R09: 0000000000000000
R10: 0000000000000003 R11: 0000000000000246 R12: 0000000000000002
R13: 00007f00d0db5fa0 R14: 00007f00d0db5fa0 R15: 0000000000000005
</TASK>
The underlying issue is that we recurse during the original page table
move, but not during the recovery move.
Fix it by checking for both VMAs and performing the check before the
pmd_none() sanity check.
Add a new helper where we perform+document that check for the PMD and PUD
level.
Thanks to Harry for bisecting. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: subpage: keep TOWRITE tag until folio is cleaned
btrfs_subpage_set_writeback() calls folio_start_writeback() the first time
a folio is written back, and it also clears the PAGECACHE_TAG_TOWRITE tag
even if there are still dirty blocks in the folio. This can break ordering
guarantees, such as those required by btrfs_wait_ordered_extents().
That ordering breakage leads to a real failure. For example, running
generic/464 on a zoned setup will hit the following ASSERT. This happens
because the broken ordering fails to flush existing dirty pages before the
file size is truncated.
assertion failed: !list_empty(&ordered->list) :: 0, in fs/btrfs/zoned.c:1899
------------[ cut here ]------------
kernel BUG at fs/btrfs/zoned.c:1899!
Oops: invalid opcode: 0000 [#1] SMP NOPTI
CPU: 2 UID: 0 PID: 1906169 Comm: kworker/u130:2 Kdump: loaded Not tainted 6.16.0-rc6-BTRFS-ZNS+ #554 PREEMPT(voluntary)
Hardware name: Supermicro Super Server/H12SSL-NT, BIOS 2.0 02/22/2021
Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
RIP: 0010:btrfs_finish_ordered_zoned.cold+0x50/0x52 [btrfs]
RSP: 0018:ffffc9002efdbd60 EFLAGS: 00010246
RAX: 000000000000004c RBX: ffff88811923c4e0 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff827e38b1 RDI: 00000000ffffffff
RBP: ffff88810005d000 R08: 00000000ffffdfff R09: ffffffff831051c8
R10: ffffffff83055220 R11: 0000000000000000 R12: ffff8881c2458c00
R13: ffff88811923c540 R14: ffff88811923c5e8 R15: ffff8881c1bd9680
FS: 0000000000000000(0000) GS:ffff88a04acd0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f907c7a918c CR3: 0000000004024000 CR4: 0000000000350ef0
Call Trace:
<TASK>
? srso_return_thunk+0x5/0x5f
btrfs_finish_ordered_io+0x4a/0x60 [btrfs]
btrfs_work_helper+0xf9/0x490 [btrfs]
process_one_work+0x204/0x590
? srso_return_thunk+0x5/0x5f
worker_thread+0x1d6/0x3d0
? __pfx_worker_thread+0x10/0x10
kthread+0x118/0x230
? __pfx_kthread+0x10/0x10
ret_from_fork+0x205/0x260
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Consider process A calling writepages() with WB_SYNC_NONE. In zoned mode or
for compressed writes, it locks several folios for delalloc and starts
writing them out. Let's call the last locked folio folio X. Suppose the
write range only partially covers folio X, leaving some pages dirty.
Process A calls btrfs_subpage_set_writeback() when building a bio. This
function call clears the TOWRITE tag of folio X, whose size = 8K and
the block size = 4K. It is following state.
0 4K 8K
|/////|/////| (flag: DIRTY, tag: DIRTY)
<-----> Process A will write this range.
Now suppose process B concurrently calls writepages() with WB_SYNC_ALL. It
calls tag_pages_for_writeback() to tag dirty folios with
PAGECACHE_TAG_TOWRITE. Since folio X is still dirty, it gets tagged. Then,
B collects tagged folios using filemap_get_folios_tag() and must wait for
folio X to be written before returning from writepages().
0 4K 8K
|/////|/////| (flag: DIRTY, tag: DIRTY|TOWRITE)
However, between tagging and collecting, process A may call
btrfs_subpage_set_writeback() and clear folio X's TOWRITE tag.
0 4K 8K
| |/////| (flag: DIRTY|WRITEBACK, tag: DIRTY)
As a result, process B won't see folio X in its batch, and returns without
waiting for it. This breaks the WB_SYNC_ALL ordering requirement.
Fix this by using btrfs_subpage_set_writeback_keepwrite(), which retains
the TOWRITE tag. We now manually clear the tag only after the folio becomes
clean, via the xas operation. |
In the Linux kernel, the following vulnerability has been resolved:
parisc: Drop WARN_ON_ONCE() from flush_cache_vmap
I have observed warning to occassionally trigger. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: do not allow relocation of partially dropped subvolumes
[BUG]
There is an internal report that balance triggered transaction abort,
with the following call trace:
item 85 key (594509824 169 0) itemoff 12599 itemsize 33
extent refs 1 gen 197740 flags 2
ref#0: tree block backref root 7
item 86 key (594558976 169 0) itemoff 12566 itemsize 33
extent refs 1 gen 197522 flags 2
ref#0: tree block backref root 7
...
BTRFS error (device loop0): extent item not found for insert, bytenr 594526208 num_bytes 16384 parent 449921024 root_objectid 934 owner 1 offset 0
BTRFS error (device loop0): failed to run delayed ref for logical 594526208 num_bytes 16384 type 182 action 1 ref_mod 1: -117
------------[ cut here ]------------
BTRFS: Transaction aborted (error -117)
WARNING: CPU: 1 PID: 6963 at ../fs/btrfs/extent-tree.c:2168 btrfs_run_delayed_refs+0xfa/0x110 [btrfs]
And btrfs check doesn't report anything wrong related to the extent
tree.
[CAUSE]
The cause is a little complex, firstly the extent tree indeed doesn't
have the backref for 594526208.
The extent tree only have the following two backrefs around that bytenr
on-disk:
item 65 key (594509824 METADATA_ITEM 0) itemoff 13880 itemsize 33
refs 1 gen 197740 flags TREE_BLOCK
tree block skinny level 0
(176 0x7) tree block backref root CSUM_TREE
item 66 key (594558976 METADATA_ITEM 0) itemoff 13847 itemsize 33
refs 1 gen 197522 flags TREE_BLOCK
tree block skinny level 0
(176 0x7) tree block backref root CSUM_TREE
But the such missing backref item is not an corruption on disk, as the
offending delayed ref belongs to subvolume 934, and that subvolume is
being dropped:
item 0 key (934 ROOT_ITEM 198229) itemoff 15844 itemsize 439
generation 198229 root_dirid 256 bytenr 10741039104 byte_limit 0 bytes_used 345571328
last_snapshot 198229 flags 0x1000000000001(RDONLY) refs 0
drop_progress key (206324 EXTENT_DATA 2711650304) drop_level 2
level 2 generation_v2 198229
And that offending tree block 594526208 is inside the dropped range of
that subvolume. That explains why there is no backref item for that
bytenr and why btrfs check is not reporting anything wrong.
But this also shows another problem, as btrfs will do all the orphan
subvolume cleanup at a read-write mount.
So half-dropped subvolume should not exist after an RW mount, and
balance itself is also exclusive to subvolume cleanup, meaning we
shouldn't hit a subvolume half-dropped during relocation.
The root cause is, there is no orphan item for this subvolume.
In fact there are 5 subvolumes from around 2021 that have the same
problem.
It looks like the original report has some older kernels running, and
caused those zombie subvolumes.
Thankfully upstream commit 8d488a8c7ba2 ("btrfs: fix subvolume/snapshot
deletion not triggered on mount") has long fixed the bug.
[ENHANCEMENT]
For repairing such old fs, btrfs-progs will be enhanced.
Considering how delayed the problem will show up (at run delayed ref
time) and at that time we have to abort transaction already, it is too
late.
Instead here we reject any half-dropped subvolume for reloc tree at the
earliest time, preventing confusion and extra time wasted on debugging
similar bugs. |
In the Linux kernel, the following vulnerability has been resolved:
iommu/arm-smmu-qcom: Add SM6115 MDSS compatible
Add the SM6115 MDSS compatible to clients compatible list, as it also
needs that workaround.
Without this workaround, for example, QRB4210 RB2 which is based on
SM4250/SM6115 generates a lot of smmu unhandled context faults during
boot:
arm_smmu_context_fault: 116854 callbacks suppressed
arm-smmu c600000.iommu: Unhandled context fault: fsr=0x402,
iova=0x5c0ec600, fsynr=0x320021, cbfrsynra=0x420, cb=5
arm-smmu c600000.iommu: FSR = 00000402 [Format=2 TF], SID=0x420
arm-smmu c600000.iommu: FSYNR0 = 00320021 [S1CBNDX=50 PNU PLVL=1]
arm-smmu c600000.iommu: Unhandled context fault: fsr=0x402,
iova=0x5c0d7800, fsynr=0x320021, cbfrsynra=0x420, cb=5
arm-smmu c600000.iommu: FSR = 00000402 [Format=2 TF], SID=0x420
and also failed initialisation of lontium lt9611uxc, gpu and dpu is
observed:
(binding MDSS components triggered by lt9611uxc have failed)
------------[ cut here ]------------
!aspace
WARNING: CPU: 6 PID: 324 at drivers/gpu/drm/msm/msm_gem_vma.c:130 msm_gem_vma_init+0x150/0x18c [msm]
Modules linked in: ... (long list of modules)
CPU: 6 UID: 0 PID: 324 Comm: (udev-worker) Not tainted 6.15.0-03037-gaacc73ceeb8b #4 PREEMPT
Hardware name: Qualcomm Technologies, Inc. QRB4210 RB2 (DT)
pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : msm_gem_vma_init+0x150/0x18c [msm]
lr : msm_gem_vma_init+0x150/0x18c [msm]
sp : ffff80008144b280
...
Call trace:
msm_gem_vma_init+0x150/0x18c [msm] (P)
get_vma_locked+0xc0/0x194 [msm]
msm_gem_get_and_pin_iova_range+0x4c/0xdc [msm]
msm_gem_kernel_new+0x48/0x160 [msm]
msm_gpu_init+0x34c/0x53c [msm]
adreno_gpu_init+0x1b0/0x2d8 [msm]
a6xx_gpu_init+0x1e8/0x9e0 [msm]
adreno_bind+0x2b8/0x348 [msm]
component_bind_all+0x100/0x230
msm_drm_bind+0x13c/0x3d0 [msm]
try_to_bring_up_aggregate_device+0x164/0x1d0
__component_add+0xa4/0x174
component_add+0x14/0x20
dsi_dev_attach+0x20/0x34 [msm]
dsi_host_attach+0x58/0x98 [msm]
devm_mipi_dsi_attach+0x34/0x90
lt9611uxc_attach_dsi.isra.0+0x94/0x124 [lontium_lt9611uxc]
lt9611uxc_probe+0x540/0x5fc [lontium_lt9611uxc]
i2c_device_probe+0x148/0x2a8
really_probe+0xbc/0x2c0
__driver_probe_device+0x78/0x120
driver_probe_device+0x3c/0x154
__driver_attach+0x90/0x1a0
bus_for_each_dev+0x68/0xb8
driver_attach+0x24/0x30
bus_add_driver+0xe4/0x208
driver_register+0x68/0x124
i2c_register_driver+0x48/0xcc
lt9611uxc_driver_init+0x20/0x1000 [lontium_lt9611uxc]
do_one_initcall+0x60/0x1d4
do_init_module+0x54/0x1fc
load_module+0x1748/0x1c8c
init_module_from_file+0x74/0xa0
__arm64_sys_finit_module+0x130/0x2f8
invoke_syscall+0x48/0x104
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x2c/0x80
el0t_64_sync_handler+0x10c/0x138
el0t_64_sync+0x198/0x19c
---[ end trace 0000000000000000 ]---
msm_dpu 5e01000.display-controller: [drm:msm_gpu_init [msm]] *ERROR* could not allocate memptrs: -22
msm_dpu 5e01000.display-controller: failed to load adreno gpu
platform a400000.remoteproc:glink-edge:apr:service@7:dais: Adding to iommu group 19
msm_dpu 5e01000.display-controller: failed to bind 5900000.gpu (ops a3xx_ops [msm]): -22
msm_dpu 5e01000.display-controller: adev bind failed: -22
lt9611uxc 0-002b: failed to attach dsi to host
lt9611uxc 0-002b: probe with driver lt9611uxc failed with error -22 |
In the Linux kernel, the following vulnerability has been resolved:
dm: dm-crypt: Do not partially accept write BIOs with zoned targets
Read and write operations issued to a dm-crypt target may be split
according to the dm-crypt internal limits defined by the max_read_size
and max_write_size module parameters (default is 128 KB). The intent is
to improve processing time of large BIOs by splitting them into smaller
operations that can be parallelized on different CPUs.
For zoned dm-crypt targets, this BIO splitting is still done but without
the parallel execution to ensure that the issuing order of write
operations to the underlying devices remains sequential. However, the
splitting itself causes other problems:
1) Since dm-crypt relies on the block layer zone write plugging to
handle zone append emulation using regular write operations, the
reminder of a split write BIO will always be plugged into the target
zone write plugged. Once the on-going write BIO finishes, this
reminder BIO is unplugged and issued from the zone write plug work.
If this reminder BIO itself needs to be split, the reminder will be
re-issued and plugged again, but that causes a call to a
blk_queue_enter(), which may block if a queue freeze operation was
initiated. This results in a deadlock as DM submission still holds
BIOs that the queue freeze side is waiting for.
2) dm-crypt relies on the emulation done by the block layer using
regular write operations for processing zone append operations. This
still requires to properly return the written sector as the BIO
sector of the original BIO. However, this can be done correctly only
and only if there is a single clone BIO used for processing the
original zone append operation issued by the user. If the size of a
zone append operation is larger than dm-crypt max_write_size, then
the orginal BIO will be split and processed as a chain of regular
write operations. Such chaining result in an incorrect written sector
being returned to the zone append issuer using the original BIO
sector. This in turn results in file system data corruptions using
xfs or btrfs.
Fix this by modifying get_max_request_size() to always return the size
of the BIO to avoid it being split with dm_accpet_partial_bio() in
crypt_map(). get_max_request_size() is renamed to
get_max_request_sectors() to clarify the unit of the value returned
and its interface is changed to take a struct dm_target pointer and a
pointer to the struct bio being processed. In addition to this change,
to ensure that crypt_alloc_buffer() works correctly, set the dm-crypt
device max_hw_sectors limit to be at most
BIO_MAX_VECS << PAGE_SECTORS_SHIFT (1 MB with a 4KB page architecture).
This forces DM core to split write BIOs before passing them to
crypt_map(), and thus guaranteeing that dm-crypt can always accept an
entire write BIO without needing to split it.
This change does not have any effect on the read path of dm-crypt. Read
operations can still be split and the BIO fragments processed in
parallel. There is also no impact on the performance of the write path
given that all zone write BIOs were already processed inline instead of
in parallel.
This change also does not affect in any way regular dm-crypt block
devices. |
Daikin Security Gateway is vulnerable to an authorization bypass through
a user-controlled key vulnerability that could allow an attacker to
bypass authentication. An unauthorized attacker could access the system
without prior credentials. |
An issue was discovered in Subrion CMS 4.2.1, allowing authenticated adminitrators or moderators with access to the built-in Run SQL Query feature under the SQL Tool admin panel - to gain escalated privileges in the context of the SQL query tool. |