| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| This issue was addressed with improvements to the noise injection algorithm. This issue is fixed in visionOS 1.2, macOS Sonoma 14.5, Safari 17.5, iOS 17.5 and iPadOS 17.5. A maliciously crafted webpage may be able to fingerprint the user. |
| The issue was addressed by adding additional logic. This issue is fixed in tvOS 17.5, iOS 16.7.8 and iPadOS 16.7.8, visionOS 1.2, Safari 17.5, iOS 17.5 and iPadOS 17.5, watchOS 10.5, macOS Sonoma 14.5. A maliciously crafted webpage may be able to fingerprint the user. |
| The issue was addressed with improved checks. This issue is fixed in iOS 17.5 and iPadOS 17.5, tvOS 17.5, Safari 17.5, watchOS 10.5, macOS Sonoma 14.5. An attacker with arbitrary read and write capability may be able to bypass Pointer Authentication. |
| An integer overflow was addressed with improved input validation. This issue is fixed in tvOS 17.5, iOS 16.7.8 and iPadOS 16.7.8, visionOS 1.2, Safari 17.5, iOS 17.5 and iPadOS 17.5. Processing maliciously crafted web content may lead to arbitrary code execution. |
| This issue was addressed through improved state management. This issue is fixed in tvOS 17.5, visionOS 1.2, Safari 17.5, iOS 17.5 and iPadOS 17.5, watchOS 10.5, macOS Sonoma 14.5. A maliciously crafted webpage may be able to fingerprint the user. |
| The issue was addressed with improved memory handling. This issue is fixed in macOS Ventura 13.6.8, macOS Sonoma 14.5, macOS Monterey 12.7.6, watchOS 10.5, visionOS 1.3, tvOS 17.5, iOS 17.5 and iPadOS 17.5. An app may be able to execute arbitrary code with kernel privileges. |
| A race condition was addressed with improved locking. This issue is fixed in macOS Sonoma 14.5, iOS 16.7.8 and iPadOS 16.7.8, macOS Ventura 13.6.7, watchOS 10.5, visionOS 1.3, tvOS 17.5, iOS 17.5 and iPadOS 17.5, macOS Monterey 12.7.5. An attacker in a privileged network position may be able to spoof network packets. |
| The issue was addressed with improved memory handling. This issue is fixed in tvOS 17.5, iOS 16.7.8 and iPadOS 16.7.8, visionOS 1.2, Safari 17.5, iOS 17.5 and iPadOS 17.5, watchOS 10.5, macOS Sonoma 14.5. Processing web content may lead to arbitrary code execution. |
| The issue was addressed with improved memory handling. This issue is fixed in tvOS 17.5, visionOS 1.2, Safari 17.5, iOS 17.5 and iPadOS 17.5, watchOS 10.5, macOS Sonoma 14.5. Processing web content may lead to arbitrary code execution. |
| The issue was addressed with improved checks. This issue is fixed in iTunes 12.13.2 for Windows. Parsing a file may lead to an unexpected app termination or arbitrary code execution. |
| In PHP 8.3.* before 8.3.5, function mb_encode_mimeheader() runs endlessly for some inputs that contain long strings of non-space characters followed by a space. This could lead to a potential DoS attack if a hostile user sends data to an application that uses this function. |
| Due to an incomplete fix to CVE-2022-31629 https://github.com/advisories/GHSA-c43m-486j-j32p , network and same-site attackers can set a standard insecure cookie in the victim's browser which is treated as a __Host- or __Secure- cookie by PHP applications. |
| In Django 3.2 before 3.2.25, 4.2 before 4.2.11, and 5.0 before 5.0.3, the django.utils.text.Truncator.words() method (with html=True) and the truncatewords_html template filter are subject to a potential regular expression denial-of-service attack via a crafted string. NOTE: this issue exists because of an incomplete fix for CVE-2019-14232 and CVE-2023-43665. |
| HTTP/2 incoming headers exceeding the limit are temporarily buffered in nghttp2 in order to generate an informative HTTP 413 response. If a client does not stop sending headers, this leads to memory exhaustion. |
| An issue was discovered in Ruby 3.x through 3.3.0. If attacker-supplied data is provided to the Ruby regex compiler, it is possible to extract arbitrary heap data relative to the start of the text, including pointers and sensitive strings. The fixed versions are 3.0.7, 3.1.5, 3.2.4, and 3.3.1. |
| An issue was discovered in RDoc 6.3.3 through 6.6.2, as distributed in Ruby 3.x through 3.3.0. When parsing .rdoc_options (used for configuration in RDoc) as a YAML file, object injection and resultant remote code execution are possible because there are no restrictions on the classes that can be restored. (When loading the documentation cache, object injection and resultant remote code execution are also possible if there were a crafted cache.) The main fixed version is 6.6.3.1. For Ruby 3.0 users, a fixed version is rdoc 6.3.4.1. For Ruby 3.1 users, a fixed version is rdoc 6.4.1.1. For Ruby 3.2 users, a fixed version is rdoc 6.5.1.1. |
| A buffer-overread issue was discovered in StringIO 3.0.1, as distributed in Ruby 3.0.x through 3.0.6 and 3.1.x through 3.1.4. The ungetbyte and ungetc methods on a StringIO can read past the end of a string, and a subsequent call to StringIO.gets may return the memory value. 3.0.3 is the main fixed version; however, for Ruby 3.0 users, a fixed version is stringio 3.0.1.1, and for Ruby 3.1 users, a fixed version is stringio 3.0.1.2. |
| In the Linux kernel, the following vulnerability has been resolved:
fork: defer linking file vma until vma is fully initialized
Thorvald reported a WARNING [1]. And the root cause is below race:
CPU 1 CPU 2
fork hugetlbfs_fallocate
dup_mmap hugetlbfs_punch_hole
i_mmap_lock_write(mapping);
vma_interval_tree_insert_after -- Child vma is visible through i_mmap tree.
i_mmap_unlock_write(mapping);
hugetlb_dup_vma_private -- Clear vma_lock outside i_mmap_rwsem!
i_mmap_lock_write(mapping);
hugetlb_vmdelete_list
vma_interval_tree_foreach
hugetlb_vma_trylock_write -- Vma_lock is cleared.
tmp->vm_ops->open -- Alloc new vma_lock outside i_mmap_rwsem!
hugetlb_vma_unlock_write -- Vma_lock is assigned!!!
i_mmap_unlock_write(mapping);
hugetlb_dup_vma_private() and hugetlb_vm_op_open() are called outside
i_mmap_rwsem lock while vma lock can be used in the same time. Fix this
by deferring linking file vma until vma is fully initialized. Those vmas
should be initialized first before they can be used. |
| In the Linux kernel, the following vulnerability has been resolved:
r8169: fix LED-related deadlock on module removal
Binding devm_led_classdev_register() to the netdev is problematic
because on module removal we get a RTNL-related deadlock. Fix this
by avoiding the device-managed LED functions.
Note: We can safely call led_classdev_unregister() for a LED even
if registering it failed, because led_classdev_unregister() detects
this and is a no-op in this case. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: Fix potential data-race in __nft_expr_type_get()
nft_unregister_expr() can concurrent with __nft_expr_type_get(),
and there is not any protection when iterate over nf_tables_expressions
list in __nft_expr_type_get(). Therefore, there is potential data-race
of nf_tables_expressions list entry.
Use list_for_each_entry_rcu() to iterate over nf_tables_expressions
list in __nft_expr_type_get(), and use rcu_read_lock() in the caller
nft_expr_type_get() to protect the entire type query process. |