Filtered by vendor Redhat Subscriptions
Filtered by product Rhel Aus Subscriptions
Total 961 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2024-2607 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-21 8.1 High
Return registers were overwritten which could have allowed an attacker to execute arbitrary code. *Note:* This issue only affected Armv7-A systems. Other operating systems are unaffected. This vulnerability affects Firefox < 124, Firefox ESR < 115.9, and Thunderbird < 115.9.
CVE-2024-29944 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-21 8.4 High
An attacker was able to inject an event handler into a privileged object that would allow arbitrary JavaScript execution in the parent process. Note: This vulnerability affects Desktop Firefox only, it does not affect mobile versions of Firefox. This vulnerability affects Firefox < 124.0.1 and Firefox ESR < 115.9.1.
CVE-2024-28182 2 Nghttp2, Redhat 7 Nghttp2, Enterprise Linux, Jboss Core Services and 4 more 2024-11-21 5.3 Medium
nghttp2 is an implementation of the Hypertext Transfer Protocol version 2 in C. The nghttp2 library prior to version 1.61.0 keeps reading the unbounded number of HTTP/2 CONTINUATION frames even after a stream is reset to keep HPACK context in sync. This causes excessive CPU usage to decode HPACK stream. nghttp2 v1.61.0 mitigates this vulnerability by limiting the number of CONTINUATION frames it accepts per stream. There is no workaround for this vulnerability.
CVE-2024-27983 1 Redhat 6 Enterprise Linux, Rhel Aus, Rhel E4s and 3 more 2024-11-21 7.5 High
An attacker can make the Node.js HTTP/2 server completely unavailable by sending a small amount of HTTP/2 frames packets with a few HTTP/2 frames inside. It is possible to leave some data in nghttp2 memory after reset when headers with HTTP/2 CONTINUATION frame are sent to the server and then a TCP connection is abruptly closed by the client triggering the Http2Session destructor while header frames are still being processed (and stored in memory) causing a race condition.
CVE-2024-27851 2 Apple, Redhat 12 Ipados, Iphone Os, Macos and 9 more 2024-11-21 8.8 High
The issue was addressed with improved bounds checks. This issue is fixed in tvOS 17.5, visionOS 1.2, Safari 17.5, iOS 17.5 and iPadOS 17.5, watchOS 10.5, macOS Sonoma 14.5. Processing maliciously crafted web content may lead to arbitrary code execution.
CVE-2024-27833 2 Apple, Redhat 10 Ipados, Iphone Os, Safari and 7 more 2024-11-21 8.8 High
An integer overflow was addressed with improved input validation. This issue is fixed in tvOS 17.5, iOS 16.7.8 and iPadOS 16.7.8, visionOS 1.2, Safari 17.5, iOS 17.5 and iPadOS 17.5. Processing maliciously crafted web content may lead to arbitrary code execution.
CVE-2024-27820 2 Apple, Redhat 12 Ipados, Iphone Os, Macos and 9 more 2024-11-21 8.8 High
The issue was addressed with improved memory handling. This issue is fixed in tvOS 17.5, iOS 16.7.8 and iPadOS 16.7.8, visionOS 1.2, Safari 17.5, iOS 17.5 and iPadOS 17.5, watchOS 10.5, macOS Sonoma 14.5. Processing web content may lead to arbitrary code execution.
CVE-2024-27808 2 Apple, Redhat 12 Ipados, Iphone Os, Macos and 9 more 2024-11-21 8.8 High
The issue was addressed with improved memory handling. This issue is fixed in tvOS 17.5, visionOS 1.2, Safari 17.5, iOS 17.5 and iPadOS 17.5, watchOS 10.5, macOS Sonoma 14.5. Processing web content may lead to arbitrary code execution.
CVE-2024-27397 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-21 7.0 High
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: use timestamp to check for set element timeout Add a timestamp field at the beginning of the transaction, store it in the nftables per-netns area. Update set backend .insert, .deactivate and sync gc path to use the timestamp, this avoids that an element expires while control plane transaction is still unfinished. .lookup and .update, which are used from packet path, still use the current time to check if the element has expired. And .get path and dump also since this runs lockless under rcu read size lock. Then, there is async gc which also needs to check the current time since it runs asynchronously from a workqueue.
CVE-2024-27020 2 Linux, Redhat 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more 2024-11-21 7 High
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: Fix potential data-race in __nft_expr_type_get() nft_unregister_expr() can concurrent with __nft_expr_type_get(), and there is not any protection when iterate over nf_tables_expressions list in __nft_expr_type_get(). Therefore, there is potential data-race of nf_tables_expressions list entry. Use list_for_each_entry_rcu() to iterate over nf_tables_expressions list in __nft_expr_type_get(), and use rcu_read_lock() in the caller nft_expr_type_get() to protect the entire type query process.
CVE-2024-27019 3 Fedoraproject, Linux, Redhat 7 Fedora, Linux Kernel, Enterprise Linux and 4 more 2024-11-21 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: Fix potential data-race in __nft_obj_type_get() nft_unregister_obj() can concurrent with __nft_obj_type_get(), and there is not any protection when iterate over nf_tables_objects list in __nft_obj_type_get(). Therefore, there is potential data-race of nf_tables_objects list entry. Use list_for_each_entry_rcu() to iterate over nf_tables_objects list in __nft_obj_type_get(), and use rcu_read_lock() in the caller nft_obj_type_get() to protect the entire type query process.
CVE-2024-26993 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs: sysfs: Fix reference leak in sysfs_break_active_protection() The sysfs_break_active_protection() routine has an obvious reference leak in its error path. If the call to kernfs_find_and_get() fails then kn will be NULL, so the companion sysfs_unbreak_active_protection() routine won't get called (and would only cause an access violation by trying to dereference kn->parent if it was called). As a result, the reference to kobj acquired at the start of the function will never be released. Fix the leak by adding an explicit kobject_put() call when kn is NULL.
CVE-2024-26982 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Squashfs: check the inode number is not the invalid value of zero Syskiller has produced an out of bounds access in fill_meta_index(). That out of bounds access is ultimately caused because the inode has an inode number with the invalid value of zero, which was not checked. The reason this causes the out of bounds access is due to following sequence of events: 1. Fill_meta_index() is called to allocate (via empty_meta_index()) and fill a metadata index. It however suffers a data read error and aborts, invalidating the newly returned empty metadata index. It does this by setting the inode number of the index to zero, which means unused (zero is not a valid inode number). 2. When fill_meta_index() is subsequently called again on another read operation, locate_meta_index() returns the previous index because it matches the inode number of 0. Because this index has been returned it is expected to have been filled, and because it hasn't been, an out of bounds access is performed. This patch adds a sanity check which checks that the inode number is not zero when the inode is created and returns -EINVAL if it is. [phillip@squashfs.org.uk: whitespace fix] Link: https://lkml.kernel.org/r/20240409204723.446925-1-phillip@squashfs.org.uk
CVE-2024-26961 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mac802154: fix llsec key resources release in mac802154_llsec_key_del mac802154_llsec_key_del() can free resources of a key directly without following the RCU rules for waiting before the end of a grace period. This may lead to use-after-free in case llsec_lookup_key() is traversing the list of keys in parallel with a key deletion: refcount_t: addition on 0; use-after-free. WARNING: CPU: 4 PID: 16000 at lib/refcount.c:25 refcount_warn_saturate+0x162/0x2a0 Modules linked in: CPU: 4 PID: 16000 Comm: wpan-ping Not tainted 6.7.0 #19 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 RIP: 0010:refcount_warn_saturate+0x162/0x2a0 Call Trace: <TASK> llsec_lookup_key.isra.0+0x890/0x9e0 mac802154_llsec_encrypt+0x30c/0x9c0 ieee802154_subif_start_xmit+0x24/0x1e0 dev_hard_start_xmit+0x13e/0x690 sch_direct_xmit+0x2ae/0xbc0 __dev_queue_xmit+0x11dd/0x3c20 dgram_sendmsg+0x90b/0xd60 __sys_sendto+0x466/0x4c0 __x64_sys_sendto+0xe0/0x1c0 do_syscall_64+0x45/0xf0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 Also, ieee802154_llsec_key_entry structures are not freed by mac802154_llsec_key_del(): unreferenced object 0xffff8880613b6980 (size 64): comm "iwpan", pid 2176, jiffies 4294761134 (age 60.475s) hex dump (first 32 bytes): 78 0d 8f 18 80 88 ff ff 22 01 00 00 00 00 ad de x......."....... 00 00 00 00 00 00 00 00 03 00 cd ab 00 00 00 00 ................ backtrace: [<ffffffff81dcfa62>] __kmem_cache_alloc_node+0x1e2/0x2d0 [<ffffffff81c43865>] kmalloc_trace+0x25/0xc0 [<ffffffff88968b09>] mac802154_llsec_key_add+0xac9/0xcf0 [<ffffffff8896e41a>] ieee802154_add_llsec_key+0x5a/0x80 [<ffffffff8892adc6>] nl802154_add_llsec_key+0x426/0x5b0 [<ffffffff86ff293e>] genl_family_rcv_msg_doit+0x1fe/0x2f0 [<ffffffff86ff46d1>] genl_rcv_msg+0x531/0x7d0 [<ffffffff86fee7a9>] netlink_rcv_skb+0x169/0x440 [<ffffffff86ff1d88>] genl_rcv+0x28/0x40 [<ffffffff86fec15c>] netlink_unicast+0x53c/0x820 [<ffffffff86fecd8b>] netlink_sendmsg+0x93b/0xe60 [<ffffffff86b91b35>] ____sys_sendmsg+0xac5/0xca0 [<ffffffff86b9c3dd>] ___sys_sendmsg+0x11d/0x1c0 [<ffffffff86b9c65a>] __sys_sendmsg+0xfa/0x1d0 [<ffffffff88eadbf5>] do_syscall_64+0x45/0xf0 [<ffffffff890000ea>] entry_SYSCALL_64_after_hwframe+0x6e/0x76 Handle the proper resource release in the RCU callback function mac802154_llsec_key_del_rcu(). Note that if llsec_lookup_key() finds a key, it gets a refcount via llsec_key_get() and locally copies key id from key_entry (which is a list element). So it's safe to call llsec_key_put() and free the list entry after the RCU grace period elapses. Found by Linux Verification Center (linuxtesting.org).
CVE-2024-26923 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-21 7.0 High
In the Linux kernel, the following vulnerability has been resolved: af_unix: Fix garbage collector racing against connect() Garbage collector does not take into account the risk of embryo getting enqueued during the garbage collection. If such embryo has a peer that carries SCM_RIGHTS, two consecutive passes of scan_children() may see a different set of children. Leading to an incorrectly elevated inflight count, and then a dangling pointer within the gc_inflight_list. sockets are AF_UNIX/SOCK_STREAM S is an unconnected socket L is a listening in-flight socket bound to addr, not in fdtable V's fd will be passed via sendmsg(), gets inflight count bumped connect(S, addr) sendmsg(S, [V]); close(V) __unix_gc() ---------------- ------------------------- ----------- NS = unix_create1() skb1 = sock_wmalloc(NS) L = unix_find_other(addr) unix_state_lock(L) unix_peer(S) = NS // V count=1 inflight=0 NS = unix_peer(S) skb2 = sock_alloc() skb_queue_tail(NS, skb2[V]) // V became in-flight // V count=2 inflight=1 close(V) // V count=1 inflight=1 // GC candidate condition met for u in gc_inflight_list: if (total_refs == inflight_refs) add u to gc_candidates // gc_candidates={L, V} for u in gc_candidates: scan_children(u, dec_inflight) // embryo (skb1) was not // reachable from L yet, so V's // inflight remains unchanged __skb_queue_tail(L, skb1) unix_state_unlock(L) for u in gc_candidates: if (u.inflight) scan_children(u, inc_inflight_move_tail) // V count=1 inflight=2 (!) If there is a GC-candidate listening socket, lock/unlock its state. This makes GC wait until the end of any ongoing connect() to that socket. After flipping the lock, a possibly SCM-laden embryo is already enqueued. And if there is another embryo coming, it can not possibly carry SCM_RIGHTS. At this point, unix_inflight() can not happen because unix_gc_lock is already taken. Inflight graph remains unaffected.
CVE-2024-26870 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: NFSv4.2: fix nfs4_listxattr kernel BUG at mm/usercopy.c:102 A call to listxattr() with a buffer size = 0 returns the actual size of the buffer needed for a subsequent call. When size > 0, nfs4_listxattr() does not return an error because either generic_listxattr() or nfs4_listxattr_nfs4_label() consumes exactly all the bytes then size is 0 when calling nfs4_listxattr_nfs4_user() which then triggers the following kernel BUG: [ 99.403778] kernel BUG at mm/usercopy.c:102! [ 99.404063] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP [ 99.408463] CPU: 0 PID: 3310 Comm: python3 Not tainted 6.6.0-61.fc40.aarch64 #1 [ 99.415827] Call trace: [ 99.415985] usercopy_abort+0x70/0xa0 [ 99.416227] __check_heap_object+0x134/0x158 [ 99.416505] check_heap_object+0x150/0x188 [ 99.416696] __check_object_size.part.0+0x78/0x168 [ 99.416886] __check_object_size+0x28/0x40 [ 99.417078] listxattr+0x8c/0x120 [ 99.417252] path_listxattr+0x78/0xe0 [ 99.417476] __arm64_sys_listxattr+0x28/0x40 [ 99.417723] invoke_syscall+0x78/0x100 [ 99.417929] el0_svc_common.constprop.0+0x48/0xf0 [ 99.418186] do_el0_svc+0x24/0x38 [ 99.418376] el0_svc+0x3c/0x110 [ 99.418554] el0t_64_sync_handler+0x120/0x130 [ 99.418788] el0t_64_sync+0x194/0x198 [ 99.418994] Code: aa0003e3 d000a3e0 91310000 97f49bdb (d4210000) Issue is reproduced when generic_listxattr() returns 'system.nfs4_acl', thus calling lisxattr() with size = 16 will trigger the bug. Add check on nfs4_listxattr() to return ERANGE error when it is called with size > 0 and the return value is greater than size.
CVE-2024-26852 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-21 7.8 High
In the Linux kernel, the following vulnerability has been resolved: net/ipv6: avoid possible UAF in ip6_route_mpath_notify() syzbot found another use-after-free in ip6_route_mpath_notify() [1] Commit f7225172f25a ("net/ipv6: prevent use after free in ip6_route_mpath_notify") was not able to fix the root cause. We need to defer the fib6_info_release() calls after ip6_route_mpath_notify(), in the cleanup phase. [1] BUG: KASAN: slab-use-after-free in rt6_fill_node+0x1460/0x1ac0 Read of size 4 at addr ffff88809a07fc64 by task syz-executor.2/23037 CPU: 0 PID: 23037 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-01035-gea7f3cfaa588 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1e7/0x2e0 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:377 [inline] print_report+0x167/0x540 mm/kasan/report.c:488 kasan_report+0x142/0x180 mm/kasan/report.c:601 rt6_fill_node+0x1460/0x1ac0 inet6_rt_notify+0x13b/0x290 net/ipv6/route.c:6184 ip6_route_mpath_notify net/ipv6/route.c:5198 [inline] ip6_route_multipath_add net/ipv6/route.c:5404 [inline] inet6_rtm_newroute+0x1d0f/0x2300 net/ipv6/route.c:5517 rtnetlink_rcv_msg+0x885/0x1040 net/core/rtnetlink.c:6597 netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543 netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline] netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367 netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:745 ____sys_sendmsg+0x525/0x7d0 net/socket.c:2584 ___sys_sendmsg net/socket.c:2638 [inline] __sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667 do_syscall_64+0xf9/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7f73dd87dda9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f73de6550c8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007f73dd9ac050 RCX: 00007f73dd87dda9 RDX: 0000000000000000 RSI: 0000000020000140 RDI: 0000000000000005 RBP: 00007f73dd8ca47a R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000006e R14: 00007f73dd9ac050 R15: 00007ffdbdeb7858 </TASK> Allocated by task 23037: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:372 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:389 kasan_kmalloc include/linux/kasan.h:211 [inline] __do_kmalloc_node mm/slub.c:3981 [inline] __kmalloc+0x22e/0x490 mm/slub.c:3994 kmalloc include/linux/slab.h:594 [inline] kzalloc include/linux/slab.h:711 [inline] fib6_info_alloc+0x2e/0xf0 net/ipv6/ip6_fib.c:155 ip6_route_info_create+0x445/0x12b0 net/ipv6/route.c:3758 ip6_route_multipath_add net/ipv6/route.c:5298 [inline] inet6_rtm_newroute+0x744/0x2300 net/ipv6/route.c:5517 rtnetlink_rcv_msg+0x885/0x1040 net/core/rtnetlink.c:6597 netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543 netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline] netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367 netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:745 ____sys_sendmsg+0x525/0x7d0 net/socket.c:2584 ___sys_sendmsg net/socket.c:2638 [inline] __sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667 do_syscall_64+0xf9/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 Freed by task 16: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x4e/0x60 mm/kasan/generic.c:640 poison_slab_object+0xa6/0xe0 m ---truncated---
CVE-2024-26830 1 Redhat 3 Rhel Aus, Rhel E4s, Rhel Tus 2024-11-21 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: i40e: Do not allow untrusted VF to remove administratively set MAC Currently when PF administratively sets VF's MAC address and the VF is put down (VF tries to delete all MACs) then the MAC is removed from MAC filters and primary VF MAC is zeroed. Do not allow untrusted VF to remove primary MAC when it was set administratively by PF. Reproducer: 1) Create VF 2) Set VF interface up 3) Administratively set the VF's MAC 4) Put VF interface down [root@host ~]# echo 1 > /sys/class/net/enp2s0f0/device/sriov_numvfs [root@host ~]# ip link set enp2s0f0v0 up [root@host ~]# ip link set enp2s0f0 vf 0 mac fe:6c:b5:da:c7:7d [root@host ~]# ip link show enp2s0f0 23: enp2s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT group default qlen 1000 link/ether 3c:ec:ef:b7:dd:04 brd ff:ff:ff:ff:ff:ff vf 0 link/ether fe:6c:b5:da:c7:7d brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off [root@host ~]# ip link set enp2s0f0v0 down [root@host ~]# ip link show enp2s0f0 23: enp2s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT group default qlen 1000 link/ether 3c:ec:ef:b7:dd:04 brd ff:ff:ff:ff:ff:ff vf 0 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off
CVE-2024-26826 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mptcp: fix data re-injection from stale subflow When the MPTCP PM detects that a subflow is stale, all the packet scheduler must re-inject all the mptcp-level unacked data. To avoid acquiring unneeded locks, it first try to check if any unacked data is present at all in the RTX queue, but such check is currently broken, as it uses TCP-specific helper on an MPTCP socket. Funnily enough fuzzers and static checkers are happy, as the accessed memory still belongs to the mptcp_sock struct, and even from a functional perspective the recovery completed successfully, as the short-cut test always failed. A recent unrelated TCP change - commit d5fed5addb2b ("tcp: reorganize tcp_sock fast path variables") - exposed the issue, as the tcp field reorganization makes the mptcp code always skip the re-inection. Fix the issue dropping the bogus call: we are on a slow path, the early optimization proved once again to be evil.
CVE-2024-26810 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-21 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: vfio/pci: Lock external INTx masking ops Mask operations through config space changes to DisINTx may race INTx configuration changes via ioctl. Create wrappers that add locking for paths outside of the core interrupt code. In particular, irq_type is updated holding igate, therefore testing is_intx() requires holding igate. For example clearing DisINTx from config space can otherwise race changes of the interrupt configuration. This aligns interfaces which may trigger the INTx eventfd into two camps, one side serialized by igate and the other only enabled while INTx is configured. A subsequent patch introduces synchronization for the latter flows.