CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
An out-of-bounds read flaw was found in Shim due to the lack of proper boundary verification during the load of a PE binary. This flaw allows an attacker to load a crafted PE binary, triggering the issue and crashing Shim, resulting in a denial of service. |
A buffer overflow was found in Shim in the 32-bit system. The overflow happens due to an addition operation involving a user-controlled value parsed from the PE binary being used by Shim. This value is further used for memory allocation operations, leading to a heap-based buffer overflow. This flaw causes memory corruption and can lead to a crash or data integrity issues during the boot phase. |
A flaw was found in Shim when an error happened while creating a new ESL variable. If Shim fails to create the new variable, it tries to print an error message to the user; however, the number of parameters used by the logging function doesn't match the format string used by it, leading to a crash under certain circumstances. |
A flaw was found in the libreswan client plugin for NetworkManager (NetkworkManager-libreswan), where it fails to properly sanitize the VPN configuration from the local unprivileged user. In this configuration, composed by a key-value format, the plugin fails to escape special characters, leading the application to interpret values as keys. One of the most critical parameters that could be abused by a malicious user is the `leftupdown`key. This key takes an executable command as a value and is used to specify what executes as a callback in NetworkManager-libreswan to retrieve configuration settings back to NetworkManager. As NetworkManager uses Polkit to allow an unprivileged user to control the system's network configuration, a malicious actor could achieve local privilege escalation and potential code execution as root in the targeted machine by creating a malicious configuration. |
A remote code execution vulnerability was found in Shim. The Shim boot support trusts attacker-controlled values when parsing an HTTP response. This flaw allows an attacker to craft a specific malicious HTTP request, leading to a completely controlled out-of-bounds write primitive and complete system compromise. This flaw is only exploitable during the early boot phase, an attacker needs to perform a Man-in-the-Middle or compromise the boot server to be able to exploit this vulnerability successfully. |
A vulnerability was found in libndp. This flaw allows a local malicious user to cause a buffer overflow in NetworkManager, triggered by sending a malformed IPv6 router advertisement packet. This issue occurred as libndp was not correctly validating the route length information. |
A flaw was found in the tracker-miners package. A weakness in the sandbox allows a maliciously-crafted file to execute code outside the sandbox if the tracker-extract process has first been compromised by a separate vulnerability. |
A vulnerability was found in insights-client. This security issue occurs because of insecure file operations or unsafe handling of temporary files and directories that lead to local privilege escalation. Before the insights-client has been registered on the system by root, an unprivileged local user or attacker could create the /var/tmp/insights-client directory (owning the directory with read, write, and execute permissions) on the system. After the insights-client is registered by root, an attacker could then control the directory content that insights are using by putting malicious scripts into it and executing arbitrary code as root (trivially bypassing SELinux protections because insights processes are allowed to disable SELinux system-wide). |
In the Linux kernel, the following vulnerability has been resolved:
i2c: rtl9300: ensure data length is within supported range
Add an explicit check for the xfer length to 'rtl9300_i2c_config_xfer'
to ensure the data length isn't within the supported range. In
particular a data length of 0 is not supported by the hardware and
causes unintended or destructive behaviour.
This limitation becomes obvious when looking at the register
documentation [1]. 4 bits are reserved for DATA_WIDTH and the value
of these 4 bits is used as N + 1, allowing a data length range of
1 <= len <= 16.
Affected by this is the SMBus Quick Operation which works with a data
length of 0. Passing 0 as the length causes an underflow of the value
due to:
(len - 1) & 0xf
and effectively specifying a transfer length of 16 via the registers.
This causes a 16-byte write operation instead of a Quick Write. For
example, on SFP modules without write-protected EEPROM this soft-bricks
them by overwriting some initial bytes.
For completeness, also add a quirk for the zero length.
[1] https://svanheule.net/realtek/longan/register/i2c_mst1_ctrl2 |
In the Linux kernel, the following vulnerability has been resolved:
ceph: fix race condition validating r_parent before applying state
Add validation to ensure the cached parent directory inode matches the
directory info in MDS replies. This prevents client-side race conditions
where concurrent operations (e.g. rename) cause r_parent to become stale
between request initiation and reply processing, which could lead to
applying state changes to incorrect directory inodes.
[ idryomov: folded a kerneldoc fixup and a follow-up fix from Alex to
move CEPH_CAP_PIN reference when r_parent is updated:
When the parent directory lock is not held, req->r_parent can become
stale and is updated to point to the correct inode. However, the
associated CEPH_CAP_PIN reference was not being adjusted. The
CEPH_CAP_PIN is a reference on an inode that is tracked for
accounting purposes. Moving this pin is important to keep the
accounting balanced. When the pin was not moved from the old parent
to the new one, it created two problems: The reference on the old,
stale parent was never released, causing a reference leak.
A reference for the new parent was never acquired, creating the risk
of a reference underflow later in ceph_mdsc_release_request(). This
patch corrects the logic by releasing the pin from the old parent and
acquiring it for the new parent when r_parent is switched. This
ensures reference accounting stays balanced. ] |
In the Linux kernel, the following vulnerability has been resolved:
genetlink: fix genl_bind() invoking bind() after -EPERM
Per family bind/unbind callbacks were introduced to allow families
to track multicast group consumer presence, e.g. to start or stop
producing events depending on listeners.
However, in genl_bind() the bind() callback was invoked even if
capability checks failed and ret was set to -EPERM. This means that
callbacks could run on behalf of unauthorized callers while the
syscall still returned failure to user space.
Fix this by only invoking bind() after "if (ret) break;" check
i.e. after permission checks have succeeded. |
In the Linux kernel, the following vulnerability has been resolved:
can: j1939: implement NETDEV_UNREGISTER notification handler
syzbot is reporting
unregister_netdevice: waiting for vcan0 to become free. Usage count = 2
problem, for j1939 protocol did not have NETDEV_UNREGISTER notification
handler for undoing changes made by j1939_sk_bind().
Commit 25fe97cb7620 ("can: j1939: move j1939_priv_put() into sk_destruct
callback") expects that a call to j1939_priv_put() can be unconditionally
delayed until j1939_sk_sock_destruct() is called. But we need to call
j1939_priv_put() against an extra ref held by j1939_sk_bind() call
(as a part of undoing changes made by j1939_sk_bind()) as soon as
NETDEV_UNREGISTER notification fires (i.e. before j1939_sk_sock_destruct()
is called via j1939_sk_release()). Otherwise, the extra ref on "struct
j1939_priv" held by j1939_sk_bind() call prevents "struct net_device" from
dropping the usage count to 1; making it impossible for
unregister_netdevice() to continue.
[mkl: remove space in front of label] |
In the Linux kernel, the following vulnerability has been resolved:
erofs: fix invalid algorithm for encoded extents
The current algorithm sanity checks do not properly apply to new
encoded extents.
Unify the algorithm check with Z_EROFS_COMPRESSION(_RUNTIME)_MAX
and ensure consistency with sbi->available_compr_algs. |
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: qcom: bam_dma: Fix DT error handling for num-channels/ees
When we don't have a clock specified in the device tree, we have no way to
ensure the BAM is on. This is often the case for remotely-controlled or
remotely-powered BAM instances. In this case, we need to read num-channels
from the DT to have all the necessary information to complete probing.
However, at the moment invalid device trees without clock and without
num-channels still continue probing, because the error handling is missing
return statements. The driver will then later try to read the number of
channels from the registers. This is unsafe, because it relies on boot
firmware and lucky timing to succeed. Unfortunately, the lack of proper
error handling here has been abused for several Qualcomm SoCs upstream,
causing early boot crashes in several situations [1, 2].
Avoid these early crashes by erroring out when any of the required DT
properties are missing. Note that this will break some of the existing DTs
upstream (mainly BAM instances related to the crypto engine). However,
clearly these DTs have never been tested properly, since the error in the
kernel log was just ignored. It's safer to disable the crypto engine for
these broken DTBs.
[1]: https://lore.kernel.org/r/CY01EKQVWE36.B9X5TDXAREPF@fairphone.com/
[2]: https://lore.kernel.org/r/20230626145959.646747-1-krzysztof.kozlowski@linaro.org/ |
In the Linux kernel, the following vulnerability has been resolved:
ixgbe: fix incorrect map used in eee linkmode
incorrectly used ixgbe_lp_map in loops intended to populate the
supported and advertised EEE linkmode bitmaps based on ixgbe_ls_map.
This results in incorrect bit setting and potential out-of-bounds
access, since ixgbe_lp_map and ixgbe_ls_map have different sizes
and purposes.
ixgbe_lp_map[i] -> ixgbe_ls_map[i]
Use ixgbe_ls_map for supported and advertised linkmodes, and keep
ixgbe_lp_map usage only for link partner (lp_advertised) mapping. |
In the Linux kernel, the following vulnerability has been resolved:
spi: microchip-core-qspi: stop checking viability of op->max_freq in supports_op callback
In commit 13529647743d9 ("spi: microchip-core-qspi: Support per spi-mem
operation frequency switches") the logic for checking the viability of
op->max_freq in mchp_coreqspi_setup_clock() was copied into
mchp_coreqspi_supports_op(). Unfortunately, op->max_freq is not valid
when this function is called during probe but is instead zero.
Accordingly, baud_rate_val is calculated to be INT_MAX due to division
by zero, causing probe of the attached memory device to fail.
Seemingly spi-microchip-core-qspi was the only driver that had such a
modification made to its supports_op callback when the per_op_freq
capability was added, so just remove it to restore prior functionality. |
In the Linux kernel, the following vulnerability has been resolved:
pcmcia: Add error handling for add_interval() in do_validate_mem()
In the do_validate_mem(), the call to add_interval() does not
handle errors. If kmalloc() fails in add_interval(), it could
result in a null pointer being inserted into the linked list,
leading to illegal memory access when sub_interval() is called
next.
This patch adds an error handling for the add_interval(). If
add_interval() returns an error, the function will return early
with the error code. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7996: add missing check for rx wcid entries
Non-station wcid entries must not be passed to the rx functions.
In case of the global wcid entry, it could even lead to corruption in the wcid
array due to pointer being casted to struct mt7996_sta_link using container_of. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: fix linked list corruption
Never leave scheduled wcid entries on the temporary on-stack list |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix out-of-bounds dynptr write in bpf_crypto_crypt
Stanislav reported that in bpf_crypto_crypt() the destination dynptr's
size is not validated to be at least as large as the source dynptr's
size before calling into the crypto backend with 'len = src_len'. This
can result in an OOB write when the destination is smaller than the
source.
Concretely, in mentioned function, psrc and pdst are both linear
buffers fetched from each dynptr:
psrc = __bpf_dynptr_data(src, src_len);
[...]
pdst = __bpf_dynptr_data_rw(dst, dst_len);
[...]
err = decrypt ?
ctx->type->decrypt(ctx->tfm, psrc, pdst, src_len, piv) :
ctx->type->encrypt(ctx->tfm, psrc, pdst, src_len, piv);
The crypto backend expects pdst to be large enough with a src_len length
that can be written. Add an additional src_len > dst_len check and bail
out if it's the case. Note that these kfuncs are accessible under root
privileges only. |