| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
can: isotp: isotp_sendmsg(): add result check for wait_event_interruptible()
Using wait_event_interruptible() to wait for complete transmission,
but do not check the result of wait_event_interruptible() which can be
interrupted. It will result in TX buffer has multiple accessors and
the later process interferes with the previous process.
Following is one of the problems reported by syzbot.
=============================================================
WARNING: CPU: 0 PID: 0 at net/can/isotp.c:840 isotp_tx_timer_handler+0x2e0/0x4c0
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.13.0-rc7+ #68
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1 04/01/2014
RIP: 0010:isotp_tx_timer_handler+0x2e0/0x4c0
Call Trace:
<IRQ>
? isotp_setsockopt+0x390/0x390
__hrtimer_run_queues+0xb8/0x610
hrtimer_run_softirq+0x91/0xd0
? rcu_read_lock_sched_held+0x4d/0x80
__do_softirq+0xe8/0x553
irq_exit_rcu+0xf8/0x100
sysvec_apic_timer_interrupt+0x9e/0xc0
</IRQ>
asm_sysvec_apic_timer_interrupt+0x12/0x20
Add result check for wait_event_interruptible() in isotp_sendmsg()
to avoid multiple accessers for tx buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: wcd934x: handle channel mappping list correctly
Currently each channel is added as list to dai channel list, however
there is danger of adding same channel to multiple dai channel list
which endups corrupting the other list where its already added.
This patch ensures that the channel is actually free before adding to
the dai channel list and also ensures that the channel is on the list
before deleting it.
This check was missing previously, and we did not hit this issue as
we were testing very simple usecases with sequence of amixer commands. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: ensure task_work gets run as part of cancelations
If we successfully cancel a work item but that work item needs to be
processed through task_work, then we can be sleeping uninterruptibly
in io_uring_cancel_generic() and never process it. Hence we don't
make forward progress and we end up with an uninterruptible sleep
warning.
While in there, correct a comment that should be IFF, not IIF. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: skip netdev events generated on netns removal
syzbot reported following (harmless) WARN:
WARNING: CPU: 1 PID: 2648 at net/netfilter/core.c:468
nft_netdev_unregister_hooks net/netfilter/nf_tables_api.c:230 [inline]
nf_tables_unregister_hook include/net/netfilter/nf_tables.h:1090 [inline]
__nft_release_basechain+0x138/0x640 net/netfilter/nf_tables_api.c:9524
nft_netdev_event net/netfilter/nft_chain_filter.c:351 [inline]
nf_tables_netdev_event+0x521/0x8a0 net/netfilter/nft_chain_filter.c:382
reproducer:
unshare -n bash -c 'ip link add br0 type bridge; nft add table netdev t ; \
nft add chain netdev t ingress \{ type filter hook ingress device "br0" \
priority 0\; policy drop\; \}'
Problem is that when netns device exit hooks create the UNREGISTER
event, the .pre_exit hook for nf_tables core has already removed the
base hook. Notifier attempts to do this again.
The need to do base hook unregister unconditionally was needed in the past,
because notifier was last stage where reg->dev dereference was safe.
Now that nf_tables does the hook removal in .pre_exit, this isn't
needed anymore. |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: Fix input error path memory access
When there is a misconfiguration of input state slow path
KASAN report error. Fix this error.
west login:
[ 52.987278] eth1: renamed from veth11
[ 53.078814] eth1: renamed from veth21
[ 53.181355] eth1: renamed from veth31
[ 54.921702] ==================================================================
[ 54.922602] BUG: KASAN: wild-memory-access in xfrmi_rcv_cb+0x2d/0x295
[ 54.923393] Read of size 8 at addr 6b6b6b6b00000000 by task ping/512
[ 54.924169]
[ 54.924386] CPU: 0 PID: 512 Comm: ping Not tainted 6.9.0-08574-gcd29a4313a1b #25
[ 54.925290] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 54.926401] Call Trace:
[ 54.926731] <IRQ>
[ 54.927009] dump_stack_lvl+0x2a/0x3b
[ 54.927478] kasan_report+0x84/0xa6
[ 54.927930] ? xfrmi_rcv_cb+0x2d/0x295
[ 54.928410] xfrmi_rcv_cb+0x2d/0x295
[ 54.928872] ? xfrm4_rcv_cb+0x3d/0x5e
[ 54.929354] xfrm4_rcv_cb+0x46/0x5e
[ 54.929804] xfrm_rcv_cb+0x7e/0xa1
[ 54.930240] xfrm_input+0x1b3a/0x1b96
[ 54.930715] ? xfrm_offload+0x41/0x41
[ 54.931182] ? raw_rcv+0x292/0x292
[ 54.931617] ? nf_conntrack_confirm+0xa2/0xa2
[ 54.932158] ? skb_sec_path+0xd/0x3f
[ 54.932610] ? xfrmi_input+0x90/0xce
[ 54.933066] xfrm4_esp_rcv+0x33/0x54
[ 54.933521] ip_protocol_deliver_rcu+0xd7/0x1b2
[ 54.934089] ip_local_deliver_finish+0x110/0x120
[ 54.934659] ? ip_protocol_deliver_rcu+0x1b2/0x1b2
[ 54.935248] NF_HOOK.constprop.0+0xf8/0x138
[ 54.935767] ? ip_sublist_rcv_finish+0x68/0x68
[ 54.936317] ? secure_tcpv6_ts_off+0x23/0x168
[ 54.936859] ? ip_protocol_deliver_rcu+0x1b2/0x1b2
[ 54.937454] ? __xfrm_policy_check2.constprop.0+0x18d/0x18d
[ 54.938135] NF_HOOK.constprop.0+0xf8/0x138
[ 54.938663] ? ip_sublist_rcv_finish+0x68/0x68
[ 54.939220] ? __xfrm_policy_check2.constprop.0+0x18d/0x18d
[ 54.939904] ? ip_local_deliver_finish+0x120/0x120
[ 54.940497] __netif_receive_skb_one_core+0xc9/0x107
[ 54.941121] ? __netif_receive_skb_list_core+0x1c2/0x1c2
[ 54.941771] ? blk_mq_start_stopped_hw_queues+0xc7/0xf9
[ 54.942413] ? blk_mq_start_stopped_hw_queue+0x38/0x38
[ 54.943044] ? virtqueue_get_buf_ctx+0x295/0x46b
[ 54.943618] process_backlog+0xb3/0x187
[ 54.944102] __napi_poll.constprop.0+0x57/0x1a7
[ 54.944669] net_rx_action+0x1cb/0x380
[ 54.945150] ? __napi_poll.constprop.0+0x1a7/0x1a7
[ 54.945744] ? vring_new_virtqueue+0x17a/0x17a
[ 54.946300] ? note_interrupt+0x2cd/0x367
[ 54.946805] handle_softirqs+0x13c/0x2c9
[ 54.947300] do_softirq+0x5f/0x7d
[ 54.947727] </IRQ>
[ 54.948014] <TASK>
[ 54.948300] __local_bh_enable_ip+0x48/0x62
[ 54.948832] __neigh_event_send+0x3fd/0x4ca
[ 54.949361] neigh_resolve_output+0x1e/0x210
[ 54.949896] ip_finish_output2+0x4bf/0x4f0
[ 54.950410] ? __ip_finish_output+0x171/0x1b8
[ 54.950956] ip_send_skb+0x25/0x57
[ 54.951390] raw_sendmsg+0xf95/0x10c0
[ 54.951850] ? check_new_pages+0x45/0x71
[ 54.952343] ? raw_hash_sk+0x21b/0x21b
[ 54.952815] ? kernel_init_pages+0x42/0x51
[ 54.953337] ? prep_new_page+0x44/0x51
[ 54.953811] ? get_page_from_freelist+0x72b/0x915
[ 54.954390] ? signal_pending_state+0x77/0x77
[ 54.954936] ? preempt_count_sub+0x14/0xb3
[ 54.955450] ? __might_resched+0x8a/0x240
[ 54.955951] ? __might_sleep+0x25/0xa0
[ 54.956424] ? first_zones_zonelist+0x2c/0x43
[ 54.956977] ? __rcu_read_lock+0x2d/0x3a
[ 54.957476] ? __pte_offset_map+0x32/0xa4
[ 54.957980] ? __might_resched+0x8a/0x240
[ 54.958483] ? __might_sleep+0x25/0xa0
[ 54.958963] ? inet_send_prepare+0x54/0x54
[ 54.959478] ? sock_sendmsg_nosec+0x42/0x6c
[ 54.960000] sock_sendmsg_nosec+0x42/0x6c
[ 54.960502] __sys_sendto+0x15d/0x1cc
[ 54.960966] ? __x64_sys_getpeername+0x44/0x44
[ 54.961522] ? __handle_mm_fault+0x679/0xae4
[ 54.962068] ? find_vma+0x6b/0x
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
soc: qcom: llcc: Handle a second device without data corruption
Usually there is only one llcc device. But if there were a second, even
a failed probe call would modify the global drv_data pointer. So check
if drv_data is valid before overwriting it. |
| In the Linux kernel, the following vulnerability has been resolved:
drivers: perf: Do not broadcast to other cpus when starting a counter
This command:
$ perf record -e cycles:k -e instructions:k -c 10000 -m 64M dd if=/dev/zero of=/dev/null count=1000
gives rise to this kernel warning:
[ 444.364395] WARNING: CPU: 0 PID: 104 at kernel/smp.c:775 smp_call_function_many_cond+0x42c/0x436
[ 444.364515] Modules linked in:
[ 444.364657] CPU: 0 PID: 104 Comm: perf-exec Not tainted 6.6.0-rc6-00051-g391df82e8ec3-dirty #73
[ 444.364771] Hardware name: riscv-virtio,qemu (DT)
[ 444.364868] epc : smp_call_function_many_cond+0x42c/0x436
[ 444.364917] ra : on_each_cpu_cond_mask+0x20/0x32
[ 444.364948] epc : ffffffff8009f9e0 ra : ffffffff8009fa5a sp : ff20000000003800
[ 444.364966] gp : ffffffff81500aa0 tp : ff60000002b83000 t0 : ff200000000038c0
[ 444.364982] t1 : ffffffff815021f0 t2 : 000000000000001f s0 : ff200000000038b0
[ 444.364998] s1 : ff60000002c54d98 a0 : ff60000002a73940 a1 : 0000000000000000
[ 444.365013] a2 : 0000000000000000 a3 : 0000000000000003 a4 : 0000000000000100
[ 444.365029] a5 : 0000000000010100 a6 : 0000000000f00000 a7 : 0000000000000000
[ 444.365044] s2 : 0000000000000000 s3 : ffffffffffffffff s4 : ff60000002c54d98
[ 444.365060] s5 : ffffffff81539610 s6 : ffffffff80c20c48 s7 : 0000000000000000
[ 444.365075] s8 : 0000000000000000 s9 : 0000000000000001 s10: 0000000000000001
[ 444.365090] s11: ffffffff80099394 t3 : 0000000000000003 t4 : 00000000eac0c6e6
[ 444.365104] t5 : 0000000400000000 t6 : ff60000002e010d0
[ 444.365120] status: 0000000200000100 badaddr: 0000000000000000 cause: 0000000000000003
[ 444.365226] [<ffffffff8009f9e0>] smp_call_function_many_cond+0x42c/0x436
[ 444.365295] [<ffffffff8009fa5a>] on_each_cpu_cond_mask+0x20/0x32
[ 444.365311] [<ffffffff806e90dc>] pmu_sbi_ctr_start+0x7a/0xaa
[ 444.365327] [<ffffffff806e880c>] riscv_pmu_start+0x48/0x66
[ 444.365339] [<ffffffff8012111a>] perf_adjust_freq_unthr_context+0x196/0x1ac
[ 444.365356] [<ffffffff801237aa>] perf_event_task_tick+0x78/0x8c
[ 444.365368] [<ffffffff8003faf4>] scheduler_tick+0xe6/0x25e
[ 444.365383] [<ffffffff8008a042>] update_process_times+0x80/0x96
[ 444.365398] [<ffffffff800991ec>] tick_sched_handle+0x26/0x52
[ 444.365410] [<ffffffff800993e4>] tick_sched_timer+0x50/0x98
[ 444.365422] [<ffffffff8008a6aa>] __hrtimer_run_queues+0x126/0x18a
[ 444.365433] [<ffffffff8008b350>] hrtimer_interrupt+0xce/0x1da
[ 444.365444] [<ffffffff806cdc60>] riscv_timer_interrupt+0x30/0x3a
[ 444.365457] [<ffffffff8006afa6>] handle_percpu_devid_irq+0x80/0x114
[ 444.365470] [<ffffffff80065b82>] generic_handle_domain_irq+0x1c/0x2a
[ 444.365483] [<ffffffff8045faec>] riscv_intc_irq+0x2e/0x46
[ 444.365497] [<ffffffff808a9c62>] handle_riscv_irq+0x4a/0x74
[ 444.365521] [<ffffffff808aa760>] do_irq+0x7c/0x7e
[ 444.365796] ---[ end trace 0000000000000000 ]---
That's because the fix in commit 3fec323339a4 ("drivers: perf: Fix panic
in riscv SBI mmap support") was wrong since there is no need to broadcast
to other cpus when starting a counter, that's only needed in mmap when
the counters could have already been started on other cpus, so simply
remove this broadcast. |
| In the Linux kernel, the following vulnerability has been resolved:
blk-mq: make sure active queue usage is held for bio_integrity_prep()
blk_integrity_unregister() can come if queue usage counter isn't held
for one bio with integrity prepared, so this request may be completed with
calling profile->complete_fn, then kernel panic.
Another constraint is that bio_integrity_prep() needs to be called
before bio merge.
Fix the issue by:
- call bio_integrity_prep() with one queue usage counter grabbed reliably
- call bio_integrity_prep() before bio merge |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix reg_set_min_max corruption of fake_reg
Juan reported that after doing some changes to buzzer [0] and implementing
a new fuzzing strategy guided by coverage, they noticed the following in
one of the probes:
[...]
13: (79) r6 = *(u64 *)(r0 +0) ; R0=map_value(ks=4,vs=8) R6_w=scalar()
14: (b7) r0 = 0 ; R0_w=0
15: (b4) w0 = -1 ; R0_w=0xffffffff
16: (74) w0 >>= 1 ; R0_w=0x7fffffff
17: (5c) w6 &= w0 ; R0_w=0x7fffffff R6_w=scalar(smin=smin32=0,smax=umax=umax32=0x7fffffff,var_off=(0x0; 0x7fffffff))
18: (44) w6 |= 2 ; R6_w=scalar(smin=umin=smin32=umin32=2,smax=umax=umax32=0x7fffffff,var_off=(0x2; 0x7ffffffd))
19: (56) if w6 != 0x7ffffffd goto pc+1
REG INVARIANTS VIOLATION (true_reg2): range bounds violation u64=[0x7fffffff, 0x7ffffffd] s64=[0x7fffffff, 0x7ffffffd] u32=[0x7fffffff, 0x7ffffffd] s32=[0x7fffffff, 0x7ffffffd] var_off=(0x7fffffff, 0x0)
REG INVARIANTS VIOLATION (false_reg1): range bounds violation u64=[0x7fffffff, 0x7ffffffd] s64=[0x7fffffff, 0x7ffffffd] u32=[0x7fffffff, 0x7ffffffd] s32=[0x7fffffff, 0x7ffffffd] var_off=(0x7fffffff, 0x0)
REG INVARIANTS VIOLATION (false_reg2): const tnum out of sync with range bounds u64=[0x0, 0xffffffffffffffff] s64=[0x8000000000000000, 0x7fffffffffffffff] u32=[0x0, 0xffffffff] s32=[0x80000000, 0x7fffffff] var_off=(0x7fffffff, 0x0)
19: R6_w=0x7fffffff
20: (95) exit
from 19 to 21: R0=0x7fffffff R6=scalar(smin=umin=smin32=umin32=2,smax=umax=smax32=umax32=0x7ffffffe,var_off=(0x2; 0x7ffffffd)) R7=map_ptr(ks=4,vs=8) R9=ctx() R10=fp0 fp-24=map_ptr(ks=4,vs=8) fp-40=mmmmmmmm
21: R0=0x7fffffff R6=scalar(smin=umin=smin32=umin32=2,smax=umax=smax32=umax32=0x7ffffffe,var_off=(0x2; 0x7ffffffd)) R7=map_ptr(ks=4,vs=8) R9=ctx() R10=fp0 fp-24=map_ptr(ks=4,vs=8) fp-40=mmmmmmmm
21: (14) w6 -= 2147483632 ; R6_w=scalar(smin=umin=umin32=2,smax=umax=0xffffffff,smin32=0x80000012,smax32=14,var_off=(0x2; 0xfffffffd))
22: (76) if w6 s>= 0xe goto pc+1 ; R6_w=scalar(smin=umin=umin32=2,smax=umax=0xffffffff,smin32=0x80000012,smax32=13,var_off=(0x2; 0xfffffffd))
23: (95) exit
from 22 to 24: R0=0x7fffffff R6_w=14 R7=map_ptr(ks=4,vs=8) R9=ctx() R10=fp0 fp-24=map_ptr(ks=4,vs=8) fp-40=mmmmmmmm
24: R0=0x7fffffff R6_w=14 R7=map_ptr(ks=4,vs=8) R9=ctx() R10=fp0 fp-24=map_ptr(ks=4,vs=8) fp-40=mmmmmmmm
24: (14) w6 -= 14 ; R6_w=0
[...]
What can be seen here is a register invariant violation on line 19. After
the binary-or in line 18, the verifier knows that bit 2 is set but knows
nothing about the rest of the content which was loaded from a map value,
meaning, range is [2,0x7fffffff] with var_off=(0x2; 0x7ffffffd). When in
line 19 the verifier analyzes the branch, it splits the register states
in reg_set_min_max() into the registers of the true branch (true_reg1,
true_reg2) and the registers of the false branch (false_reg1, false_reg2).
Since the test is w6 != 0x7ffffffd, the src_reg is a known constant.
Internally, the verifier creates a "fake" register initialized as scalar
to the value of 0x7ffffffd, and then passes it onto reg_set_min_max(). Now,
for line 19, it is mathematically impossible to take the false branch of
this program, yet the verifier analyzes it. It is impossible because the
second bit of r6 will be set due to the prior or operation and the
constant in the condition has that bit unset (hex(fd) == binary(1111 1101).
When the verifier first analyzes the false / fall-through branch, it will
compute an intersection between the var_off of r6 and of the constant. This
is because the verifier creates a "fake" register initialized to the value
of the constant. The intersection result later refines both registers in
regs_refine_cond_op():
[...]
t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
reg1->var_o
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Do not use WQ_MEM_RECLAIM flag for workqueue
When both ice and the irdma driver are loaded, a warning in
check_flush_dependency is being triggered. This is due to ice driver
workqueue being allocated with the WQ_MEM_RECLAIM flag and the irdma one
is not.
According to kernel documentation, this flag should be set if the
workqueue will be involved in the kernel's memory reclamation flow.
Since it is not, there is no need for the ice driver's WQ to have this
flag set so remove it.
Example trace:
[ +0.000004] workqueue: WQ_MEM_RECLAIM ice:ice_service_task [ice] is flushing !WQ_MEM_RECLAIM infiniband:0x0
[ +0.000139] WARNING: CPU: 0 PID: 728 at kernel/workqueue.c:2632 check_flush_dependency+0x178/0x1a0
[ +0.000011] Modules linked in: bonding tls xt_CHECKSUM xt_MASQUERADE xt_conntrack ipt_REJECT nf_reject_ipv4 nft_compat nft_cha
in_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nf_tables nfnetlink bridge stp llc rfkill vfat fat intel_rapl_msr intel
_rapl_common isst_if_common skx_edac nfit libnvdimm x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel kvm irqbypass crct1
0dif_pclmul crc32_pclmul ghash_clmulni_intel rapl intel_cstate rpcrdma sunrpc rdma_ucm ib_srpt ib_isert iscsi_target_mod target_
core_mod ib_iser libiscsi scsi_transport_iscsi rdma_cm ib_cm iw_cm iTCO_wdt iTCO_vendor_support ipmi_ssif irdma mei_me ib_uverbs
ib_core intel_uncore joydev pcspkr i2c_i801 acpi_ipmi mei lpc_ich i2c_smbus intel_pch_thermal ioatdma ipmi_si acpi_power_meter
acpi_pad xfs libcrc32c sd_mod t10_pi crc64_rocksoft crc64 sg ahci ixgbe libahci ice i40e igb crc32c_intel mdio i2c_algo_bit liba
ta dca wmi dm_mirror dm_region_hash dm_log dm_mod ipmi_devintf ipmi_msghandler fuse
[ +0.000161] [last unloaded: bonding]
[ +0.000006] CPU: 0 PID: 728 Comm: kworker/0:2 Tainted: G S 6.2.0-rc2_next-queue-13jan-00458-gc20aabd57164 #1
[ +0.000006] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0010.010620200716 01/06/2020
[ +0.000003] Workqueue: ice ice_service_task [ice]
[ +0.000127] RIP: 0010:check_flush_dependency+0x178/0x1a0
[ +0.000005] Code: 89 8e 02 01 e8 49 3d 40 00 49 8b 55 18 48 8d 8d d0 00 00 00 48 8d b3 d0 00 00 00 4d 89 e0 48 c7 c7 e0 3b 08
9f e8 bb d3 07 01 <0f> 0b e9 be fe ff ff 80 3d 24 89 8e 02 00 0f 85 6b ff ff ff e9 06
[ +0.000004] RSP: 0018:ffff88810a39f990 EFLAGS: 00010282
[ +0.000005] RAX: 0000000000000000 RBX: ffff888141bc2400 RCX: 0000000000000000
[ +0.000004] RDX: 0000000000000001 RSI: dffffc0000000000 RDI: ffffffffa1213a80
[ +0.000003] RBP: ffff888194bf3400 R08: ffffed117b306112 R09: ffffed117b306112
[ +0.000003] R10: ffff888bd983088b R11: ffffed117b306111 R12: 0000000000000000
[ +0.000003] R13: ffff888111f84d00 R14: ffff88810a3943ac R15: ffff888194bf3400
[ +0.000004] FS: 0000000000000000(0000) GS:ffff888bd9800000(0000) knlGS:0000000000000000
[ +0.000003] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ +0.000003] CR2: 000056035b208b60 CR3: 000000017795e005 CR4: 00000000007706f0
[ +0.000003] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ +0.000003] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ +0.000002] PKRU: 55555554
[ +0.000003] Call Trace:
[ +0.000002] <TASK>
[ +0.000003] __flush_workqueue+0x203/0x840
[ +0.000006] ? mutex_unlock+0x84/0xd0
[ +0.000008] ? __pfx_mutex_unlock+0x10/0x10
[ +0.000004] ? __pfx___flush_workqueue+0x10/0x10
[ +0.000006] ? mutex_lock+0xa3/0xf0
[ +0.000005] ib_cache_cleanup_one+0x39/0x190 [ib_core]
[ +0.000174] __ib_unregister_device+0x84/0xf0 [ib_core]
[ +0.000094] ib_unregister_device+0x25/0x30 [ib_core]
[ +0.000093] irdma_ib_unregister_device+0x97/0xc0 [irdma]
[ +0.000064] ? __pfx_irdma_ib_unregister_device+0x10/0x10 [irdma]
[ +0.000059] ? up_write+0x5c/0x90
[ +0.000005] irdma_remove+0x36/0x90 [irdma]
[ +0.000062] auxiliary_bus_remove+0x32/0x50
[ +0.000007] device_r
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: Restrict CPU_BIG_ENDIAN to GNU as or LLVM IAS 15.x or newer
Prior to LLVM 15.0.0, LLVM's integrated assembler would incorrectly
byte-swap NOP when compiling for big-endian, and the resulting series of
bytes happened to match the encoding of FNMADD S21, S30, S0, S0.
This went unnoticed until commit:
34f66c4c4d5518c1 ("arm64: Use a positive cpucap for FP/SIMD")
Prior to that commit, the kernel would always enable the use of FPSIMD
early in boot when __cpu_setup() initialized CPACR_EL1, and so usage of
FNMADD within the kernel was not detected, but could result in the
corruption of user or kernel FPSIMD state.
After that commit, the instructions happen to trap during boot prior to
FPSIMD being detected and enabled, e.g.
| Unhandled 64-bit el1h sync exception on CPU0, ESR 0x000000001fe00000 -- ASIMD
| CPU: 0 PID: 0 Comm: swapper Not tainted 6.6.0-rc3-00013-g34f66c4c4d55 #1
| Hardware name: linux,dummy-virt (DT)
| pstate: 400000c9 (nZcv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : __pi_strcmp+0x1c/0x150
| lr : populate_properties+0xe4/0x254
| sp : ffffd014173d3ad0
| x29: ffffd014173d3af0 x28: fffffbfffddffcb8 x27: 0000000000000000
| x26: 0000000000000058 x25: fffffbfffddfe054 x24: 0000000000000008
| x23: fffffbfffddfe000 x22: fffffbfffddfe000 x21: fffffbfffddfe044
| x20: ffffd014173d3b70 x19: 0000000000000001 x18: 0000000000000005
| x17: 0000000000000010 x16: 0000000000000000 x15: 00000000413e7000
| x14: 0000000000000000 x13: 0000000000001bcc x12: 0000000000000000
| x11: 00000000d00dfeed x10: ffffd414193f2cd0 x9 : 0000000000000000
| x8 : 0101010101010101 x7 : ffffffffffffffc0 x6 : 0000000000000000
| x5 : 0000000000000000 x4 : 0101010101010101 x3 : 000000000000002a
| x2 : 0000000000000001 x1 : ffffd014171f2988 x0 : fffffbfffddffcb8
| Kernel panic - not syncing: Unhandled exception
| CPU: 0 PID: 0 Comm: swapper Not tainted 6.6.0-rc3-00013-g34f66c4c4d55 #1
| Hardware name: linux,dummy-virt (DT)
| Call trace:
| dump_backtrace+0xec/0x108
| show_stack+0x18/0x2c
| dump_stack_lvl+0x50/0x68
| dump_stack+0x18/0x24
| panic+0x13c/0x340
| el1t_64_irq_handler+0x0/0x1c
| el1_abort+0x0/0x5c
| el1h_64_sync+0x64/0x68
| __pi_strcmp+0x1c/0x150
| unflatten_dt_nodes+0x1e8/0x2d8
| __unflatten_device_tree+0x5c/0x15c
| unflatten_device_tree+0x38/0x50
| setup_arch+0x164/0x1e0
| start_kernel+0x64/0x38c
| __primary_switched+0xbc/0xc4
Restrict CONFIG_CPU_BIG_ENDIAN to a known good assembler, which is
either GNU as or LLVM's IAS 15.0.0 and newer, which contains the linked
commit. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: deal with large GSO size
After the blamed commit below, the TCP sockets (and the MPTCP subflows)
can build egress packets larger than 64K. That exceeds the maximum DSS
data size, the length being misrepresent on the wire and the stream being
corrupted, as later observed on the receiver:
WARNING: CPU: 0 PID: 9696 at net/mptcp/protocol.c:705 __mptcp_move_skbs_from_subflow+0x2604/0x26e0
CPU: 0 PID: 9696 Comm: syz-executor.7 Not tainted 6.6.0-rc5-gcd8bdf563d46 #45
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014
netlink: 8 bytes leftover after parsing attributes in process `syz-executor.4'.
RIP: 0010:__mptcp_move_skbs_from_subflow+0x2604/0x26e0 net/mptcp/protocol.c:705
RSP: 0018:ffffc90000006e80 EFLAGS: 00010246
RAX: ffffffff83e9f674 RBX: ffff88802f45d870 RCX: ffff888102ad0000
netlink: 8 bytes leftover after parsing attributes in process `syz-executor.4'.
RDX: 0000000080000303 RSI: 0000000000013908 RDI: 0000000000003908
RBP: ffffc90000007110 R08: ffffffff83e9e078 R09: 1ffff1100e548c8a
R10: dffffc0000000000 R11: ffffed100e548c8b R12: 0000000000013908
R13: dffffc0000000000 R14: 0000000000003908 R15: 000000000031cf29
FS: 00007f239c47e700(0000) GS:ffff88811b200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f239c45cd78 CR3: 000000006a66c006 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600
PKRU: 55555554
Call Trace:
<IRQ>
mptcp_data_ready+0x263/0xac0 net/mptcp/protocol.c:819
subflow_data_ready+0x268/0x6d0 net/mptcp/subflow.c:1409
tcp_data_queue+0x21a1/0x7a60 net/ipv4/tcp_input.c:5151
tcp_rcv_established+0x950/0x1d90 net/ipv4/tcp_input.c:6098
tcp_v6_do_rcv+0x554/0x12f0 net/ipv6/tcp_ipv6.c:1483
tcp_v6_rcv+0x2e26/0x3810 net/ipv6/tcp_ipv6.c:1749
ip6_protocol_deliver_rcu+0xd6b/0x1ae0 net/ipv6/ip6_input.c:438
ip6_input+0x1c5/0x470 net/ipv6/ip6_input.c:483
ipv6_rcv+0xef/0x2c0 include/linux/netfilter.h:304
__netif_receive_skb+0x1ea/0x6a0 net/core/dev.c:5532
process_backlog+0x353/0x660 net/core/dev.c:5974
__napi_poll+0xc6/0x5a0 net/core/dev.c:6536
net_rx_action+0x6a0/0xfd0 net/core/dev.c:6603
__do_softirq+0x184/0x524 kernel/softirq.c:553
do_softirq+0xdd/0x130 kernel/softirq.c:454
Address the issue explicitly bounding the maximum GSO size to what MPTCP
actually allows. |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: stop the device in bond_setup_by_slave()
Commit 9eed321cde22 ("net: lapbether: only support ethernet devices")
has been able to keep syzbot away from net/lapb, until today.
In the following splat [1], the issue is that a lapbether device has
been created on a bonding device without members. Then adding a non
ARPHRD_ETHER member forced the bonding master to change its type.
The fix is to make sure we call dev_close() in bond_setup_by_slave()
so that the potential linked lapbether devices (or any other devices
having assumptions on the physical device) are removed.
A similar bug has been addressed in commit 40baec225765
("bonding: fix panic on non-ARPHRD_ETHER enslave failure")
[1]
skbuff: skb_under_panic: text:ffff800089508810 len:44 put:40 head:ffff0000c78e7c00 data:ffff0000c78e7bea tail:0x16 end:0x140 dev:bond0
kernel BUG at net/core/skbuff.c:192 !
Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
Modules linked in:
CPU: 0 PID: 6007 Comm: syz-executor383 Not tainted 6.6.0-rc3-syzkaller-gbf6547d8715b #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/04/2023
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : skb_panic net/core/skbuff.c:188 [inline]
pc : skb_under_panic+0x13c/0x140 net/core/skbuff.c:202
lr : skb_panic net/core/skbuff.c:188 [inline]
lr : skb_under_panic+0x13c/0x140 net/core/skbuff.c:202
sp : ffff800096a06aa0
x29: ffff800096a06ab0 x28: ffff800096a06ba0 x27: dfff800000000000
x26: ffff0000ce9b9b50 x25: 0000000000000016 x24: ffff0000c78e7bea
x23: ffff0000c78e7c00 x22: 000000000000002c x21: 0000000000000140
x20: 0000000000000028 x19: ffff800089508810 x18: ffff800096a06100
x17: 0000000000000000 x16: ffff80008a629a3c x15: 0000000000000001
x14: 1fffe00036837a32 x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000201 x10: 0000000000000000 x9 : cb50b496c519aa00
x8 : cb50b496c519aa00 x7 : 0000000000000001 x6 : 0000000000000001
x5 : ffff800096a063b8 x4 : ffff80008e280f80 x3 : ffff8000805ad11c
x2 : 0000000000000001 x1 : 0000000100000201 x0 : 0000000000000086
Call trace:
skb_panic net/core/skbuff.c:188 [inline]
skb_under_panic+0x13c/0x140 net/core/skbuff.c:202
skb_push+0xf0/0x108 net/core/skbuff.c:2446
ip6gre_header+0xbc/0x738 net/ipv6/ip6_gre.c:1384
dev_hard_header include/linux/netdevice.h:3136 [inline]
lapbeth_data_transmit+0x1c4/0x298 drivers/net/wan/lapbether.c:257
lapb_data_transmit+0x8c/0xb0 net/lapb/lapb_iface.c:447
lapb_transmit_buffer+0x178/0x204 net/lapb/lapb_out.c:149
lapb_send_control+0x220/0x320 net/lapb/lapb_subr.c:251
__lapb_disconnect_request+0x9c/0x17c net/lapb/lapb_iface.c:326
lapb_device_event+0x288/0x4e0 net/lapb/lapb_iface.c:492
notifier_call_chain+0x1a4/0x510 kernel/notifier.c:93
raw_notifier_call_chain+0x3c/0x50 kernel/notifier.c:461
call_netdevice_notifiers_info net/core/dev.c:1970 [inline]
call_netdevice_notifiers_extack net/core/dev.c:2008 [inline]
call_netdevice_notifiers net/core/dev.c:2022 [inline]
__dev_close_many+0x1b8/0x3c4 net/core/dev.c:1508
dev_close_many+0x1e0/0x470 net/core/dev.c:1559
dev_close+0x174/0x250 net/core/dev.c:1585
lapbeth_device_event+0x2e4/0x958 drivers/net/wan/lapbether.c:466
notifier_call_chain+0x1a4/0x510 kernel/notifier.c:93
raw_notifier_call_chain+0x3c/0x50 kernel/notifier.c:461
call_netdevice_notifiers_info net/core/dev.c:1970 [inline]
call_netdevice_notifiers_extack net/core/dev.c:2008 [inline]
call_netdevice_notifiers net/core/dev.c:2022 [inline]
__dev_close_many+0x1b8/0x3c4 net/core/dev.c:1508
dev_close_many+0x1e0/0x470 net/core/dev.c:1559
dev_close+0x174/0x250 net/core/dev.c:1585
bond_enslave+0x2298/0x30cc drivers/net/bonding/bond_main.c:2332
bond_do_ioctl+0x268/0xc64 drivers/net/bonding/bond_main.c:4539
dev_ifsioc+0x754/0x9ac
dev_ioctl+0x4d8/0xd34 net/core/dev_ioctl.c:786
sock_do_ioctl+0x1d4/0x2d0 net/socket.c:1217
sock_ioctl+0x4e8/0x834 net/socket.c:1322
vfs_ioctl fs/ioctl.c:51 [inline]
__do_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/64s: Fix unrecoverable MCE calling async handler from NMI
The machine check handler is not considered NMI on 64s. The early
handler is the true NMI handler, and then it schedules the
machine_check_exception handler to run when interrupts are enabled.
This works fine except the case of an unrecoverable MCE, where the true
NMI is taken when MSR[RI] is clear, it can not recover, so it calls
machine_check_exception directly so something might be done about it.
Calling an async handler from NMI context can result in irq state and
other things getting corrupted. This can also trigger the BUG at
arch/powerpc/include/asm/interrupt.h:168
BUG_ON(!arch_irq_disabled_regs(regs) && !(regs->msr & MSR_EE));
Fix this by making an _async version of the handler which is called
in the normal case, and a NMI version that is called for unrecoverable
interrupts. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix transaction atomicity bug when enabling simple quotas
Set squota incompat bit before committing the transaction that enables
the feature.
With the config CONFIG_BTRFS_ASSERT enabled, an assertion
failure occurs regarding the simple quota feature.
[5.596534] assertion failed: btrfs_fs_incompat(fs_info, SIMPLE_QUOTA), in fs/btrfs/qgroup.c:365
[5.597098] ------------[ cut here ]------------
[5.597371] kernel BUG at fs/btrfs/qgroup.c:365!
[5.597946] CPU: 1 UID: 0 PID: 268 Comm: mount Not tainted 6.13.0-rc2-00031-gf92f4749861b #146
[5.598450] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
[5.599008] RIP: 0010:btrfs_read_qgroup_config+0x74d/0x7a0
[5.604303] <TASK>
[5.605230] ? btrfs_read_qgroup_config+0x74d/0x7a0
[5.605538] ? exc_invalid_op+0x56/0x70
[5.605775] ? btrfs_read_qgroup_config+0x74d/0x7a0
[5.606066] ? asm_exc_invalid_op+0x1f/0x30
[5.606441] ? btrfs_read_qgroup_config+0x74d/0x7a0
[5.606741] ? btrfs_read_qgroup_config+0x74d/0x7a0
[5.607038] ? try_to_wake_up+0x317/0x760
[5.607286] open_ctree+0xd9c/0x1710
[5.607509] btrfs_get_tree+0x58a/0x7e0
[5.608002] vfs_get_tree+0x2e/0x100
[5.608224] fc_mount+0x16/0x60
[5.608420] btrfs_get_tree+0x2f8/0x7e0
[5.608897] vfs_get_tree+0x2e/0x100
[5.609121] path_mount+0x4c8/0xbc0
[5.609538] __x64_sys_mount+0x10d/0x150
The issue can be easily reproduced using the following reproducer:
root@q:linux# cat repro.sh
set -e
mkfs.btrfs -q -f /dev/sdb
mount /dev/sdb /mnt/btrfs
btrfs quota enable -s /mnt/btrfs
umount /mnt/btrfs
mount /dev/sdb /mnt/btrfs
The issue is that when enabling quotas, at btrfs_quota_enable(), we set
BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE at fs_info->qgroup_flags and persist
it in the quota root in the item with the key BTRFS_QGROUP_STATUS_KEY, but
we only set the incompat bit BTRFS_FEATURE_INCOMPAT_SIMPLE_QUOTA after we
commit the transaction used to enable simple quotas.
This means that if after that transaction commit we unmount the filesystem
without starting and committing any other transaction, or we have a power
failure, the next time we mount the filesystem we will find the flag
BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE set in the item with the key
BTRFS_QGROUP_STATUS_KEY but we will not find the incompat bit
BTRFS_FEATURE_INCOMPAT_SIMPLE_QUOTA set in the superblock, triggering an
assertion failure at:
btrfs_read_qgroup_config() -> qgroup_read_enable_gen()
To fix this issue, set the BTRFS_FEATURE_INCOMPAT_SIMPLE_QUOTA flag
immediately after setting the BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE.
This ensures that both flags are flushed to disk within the same
transaction. |
| In the Linux kernel, the following vulnerability has been resolved:
isdn: mISDN: Fix sleeping function called from invalid context
The driver can call card->isac.release() function from an atomic
context.
Fix this by calling this function after releasing the lock.
The following log reveals it:
[ 44.168226 ] BUG: sleeping function called from invalid context at kernel/workqueue.c:3018
[ 44.168941 ] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 5475, name: modprobe
[ 44.169574 ] INFO: lockdep is turned off.
[ 44.169899 ] irq event stamp: 0
[ 44.170160 ] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[ 44.170627 ] hardirqs last disabled at (0): [<ffffffff814209ed>] copy_process+0x132d/0x3e00
[ 44.171240 ] softirqs last enabled at (0): [<ffffffff81420a1a>] copy_process+0x135a/0x3e00
[ 44.171852 ] softirqs last disabled at (0): [<0000000000000000>] 0x0
[ 44.172318 ] Preemption disabled at:
[ 44.172320 ] [<ffffffffa009b0a9>] nj_release+0x69/0x500 [netjet]
[ 44.174441 ] Call Trace:
[ 44.174630 ] dump_stack_lvl+0xa8/0xd1
[ 44.174912 ] dump_stack+0x15/0x17
[ 44.175166 ] ___might_sleep+0x3a2/0x510
[ 44.175459 ] ? nj_release+0x69/0x500 [netjet]
[ 44.175791 ] __might_sleep+0x82/0xe0
[ 44.176063 ] ? start_flush_work+0x20/0x7b0
[ 44.176375 ] start_flush_work+0x33/0x7b0
[ 44.176672 ] ? trace_irq_enable_rcuidle+0x85/0x170
[ 44.177034 ] ? kasan_quarantine_put+0xaa/0x1f0
[ 44.177372 ] ? kasan_quarantine_put+0xaa/0x1f0
[ 44.177711 ] __flush_work+0x11a/0x1a0
[ 44.177991 ] ? flush_work+0x20/0x20
[ 44.178257 ] ? lock_release+0x13c/0x8f0
[ 44.178550 ] ? __kasan_check_write+0x14/0x20
[ 44.178872 ] ? do_raw_spin_lock+0x148/0x360
[ 44.179187 ] ? read_lock_is_recursive+0x20/0x20
[ 44.179530 ] ? __kasan_check_read+0x11/0x20
[ 44.179846 ] ? do_raw_spin_unlock+0x55/0x900
[ 44.180168 ] ? ____kasan_slab_free+0x116/0x140
[ 44.180505 ] ? _raw_spin_unlock_irqrestore+0x41/0x60
[ 44.180878 ] ? skb_queue_purge+0x1a3/0x1c0
[ 44.181189 ] ? kfree+0x13e/0x290
[ 44.181438 ] flush_work+0x17/0x20
[ 44.181695 ] mISDN_freedchannel+0xe8/0x100
[ 44.182006 ] isac_release+0x210/0x260 [mISDNipac]
[ 44.182366 ] nj_release+0xf6/0x500 [netjet]
[ 44.182685 ] nj_remove+0x48/0x70 [netjet]
[ 44.182989 ] pci_device_remove+0xa9/0x250 |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Fix host stage-2 PGD refcount
The KVM page-table library refcounts the pages of concatenated stage-2
PGDs individually. However, when running KVM in protected mode, the
host's stage-2 PGD is currently managed by EL2 as a single high-order
compound page, which can cause the refcount of the tail pages to reach 0
when they shouldn't, hence corrupting the page-table.
Fix this by introducing a new hyp_split_page() helper in the EL2 page
allocator (matching the kernel's split_page() function), and make use of
it from host_s2_zalloc_pages_exact(). |
| In the Linux kernel, the following vulnerability has been resolved:
locking/ww_mutex/test: Fix potential workqueue corruption
In some cases running with the test-ww_mutex code, I was seeing
odd behavior where sometimes it seemed flush_workqueue was
returning before all the work threads were finished.
Often this would cause strange crashes as the mutexes would be
freed while they were being used.
Looking at the code, there is a lifetime problem as the
controlling thread that spawns the work allocates the
"struct stress" structures that are passed to the workqueue
threads. Then when the workqueue threads are finished,
they free the stress struct that was passed to them.
Unfortunately the workqueue work_struct node is in the stress
struct. Which means the work_struct is freed before the work
thread returns and while flush_workqueue is waiting.
It seems like a better idea to have the controlling thread
both allocate and free the stress structures, so that we can
be sure we don't corrupt the workqueue by freeing the structure
prematurely.
So this patch reworks the test to do so, and with this change
I no longer see the early flush_workqueue returns. |
| In the Linux kernel, the following vulnerability has been resolved:
cpu/hotplug: Don't offline the last non-isolated CPU
If a system has isolated CPUs via the "isolcpus=" command line parameter,
then an attempt to offline the last housekeeping CPU will result in a
WARN_ON() when rebuilding the scheduler domains and a subsequent panic due
to and unhandled empty CPU mas in partition_sched_domains_locked().
cpuset_hotplug_workfn()
rebuild_sched_domains_locked()
ndoms = generate_sched_domains(&doms, &attr);
cpumask_and(doms[0], top_cpuset.effective_cpus, housekeeping_cpumask(HK_FLAG_DOMAIN));
Thus results in an empty CPU mask which triggers the warning and then the
subsequent crash:
WARNING: CPU: 4 PID: 80 at kernel/sched/topology.c:2366 build_sched_domains+0x120c/0x1408
Call trace:
build_sched_domains+0x120c/0x1408
partition_sched_domains_locked+0x234/0x880
rebuild_sched_domains_locked+0x37c/0x798
rebuild_sched_domains+0x30/0x58
cpuset_hotplug_workfn+0x2a8/0x930
Unable to handle kernel paging request at virtual address fffe80027ab37080
partition_sched_domains_locked+0x318/0x880
rebuild_sched_domains_locked+0x37c/0x798
Aside of the resulting crash, it does not make any sense to offline the last
last housekeeping CPU.
Prevent this by masking out the non-housekeeping CPUs when selecting a
target CPU for initiating the CPU unplug operation via the work queue. |
| In the Linux kernel, the following vulnerability has been resolved:
media: imon: fix access to invalid resource for the second interface
imon driver probes two USB interfaces, and at the probe of the second
interface, the driver assumes blindly that the first interface got
bound with the same imon driver. It's usually true, but it's still
possible that the first interface is bound with another driver via a
malformed descriptor. Then it may lead to a memory corruption, as
spotted by syzkaller; imon driver accesses the data from drvdata as
struct imon_context object although it's a completely different one
that was assigned by another driver.
This patch adds a sanity check -- whether the first interface is
really bound with the imon driver or not -- for avoiding the problem
above at the probe time. |