Search Results (19163 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-13188 2025-11-14 9.8 Critical
A vulnerability was detected in D-Link DIR-816L 2_06_b09_beta. Affected by this vulnerability is the function authenticationcgi_main of the file /authentication.cgi. Performing manipulation of the argument Password results in stack-based buffer overflow. Remote exploitation of the attack is possible. The exploit is now public and may be used. This vulnerability only affects products that are no longer supported by the maintainer.
CVE-2021-4469 2025-11-14 N/A
Denver SHO-110 IP cameras expose a secondary HTTP service on TCP port 8001 that provides access to a '/snapshot' endpoint without authentication. While the primary web interface on port 80 enforces authentication, the backdoor service allows any remote attacker to retrieve image snapshots by directly requesting the 'snapshot' endpoint. An attacker can repeatedly collect snapshots and reconstruct the camera stream, compromising the confidentiality of the monitored environment.
CVE-2018-25125 2025-11-14 N/A
Netis ADSL Router DL4322D firmware RTK 2.1.1 contains a buffer overflow vulnerability in the embedded FTP service that allows an authenticated remote user to trigger a denial of service. After logging in to the FTP service, sending an FTP command such as ABOR with an excessively long argument causes the service, and in practice the router, to crash or become unresponsive, resulting in a loss of availability for the device and connected users.
CVE-2025-63701 2025-11-14 6.8 Medium
A heap corruption vulnerability exists in the Advantech TP-3250 printer driver's DrvUI_x64_ADVANTECH.dll (v0.3.9200.20789) when DocumentPropertiesW() is called with a valid dmDriverExtra value but an undersized output buffer. The driver incorrectly assumes the output buffer size matches the input buffer size, leading to invalid memory operations and heap corruption. This vulnerability can cause denial of service through application crashes and potentially lead to code execution in user space. Local access is required to exploit this vulnerability.
CVE-2025-38081 1 Linux 1 Linux Kernel 2025-11-14 7.1 High
In the Linux kernel, the following vulnerability has been resolved: spi-rockchip: Fix register out of bounds access Do not write native chip select stuff for GPIO chip selects. GPIOs can be numbered much higher than native CS. Also, it makes no sense.
CVE-2025-64182 1 Openexr 1 Openexr 2025-11-14 N/A
OpenEXR provides the specification and reference implementation of the EXR file format, an image storage format for the motion picture industry. In versions 3.2.0 through 3.2.4, 3.3.0 through 3.3.5, and 3.4.0 through 3.4.2, a memory safety bug in the legacy OpenEXR Python adapter (the deprecated OpenEXR.InputFile wrapper) allow crashes and likely code execution when opening attacker-controlled EXR files or when passing crafted Python objects. Integer overflow and unchecked allocation in InputFile.channel() and InputFile.channels() can lead to heap overflow (32 bit) or a NULL deref (64 bit). Versions 3.2.5, 3.3.6, and 3.4.3 contain a patch for the issue.
CVE-2022-49948 1 Linux 1 Linux Kernel 2025-11-14 7.1 High
In the Linux kernel, the following vulnerability has been resolved: vt: Clear selection before changing the font When changing the console font with ioctl(KDFONTOP) the new font size can be bigger than the previous font. A previous selection may thus now be outside of the new screen size and thus trigger out-of-bounds accesses to graphics memory if the selection is removed in vc_do_resize(). Prevent such out-of-memory accesses by dropping the selection before the various con_font_set() console handlers are called.
CVE-2022-49946 1 Linux 1 Linux Kernel 2025-11-14 7.1 High
In the Linux kernel, the following vulnerability has been resolved: clk: bcm: rpi: Prevent out-of-bounds access The while loop in raspberrypi_discover_clocks() relies on the assumption that the id of the last clock element is zero. Because this data comes from the Videocore firmware and it doesn't guarantuee such a behavior this could lead to out-of-bounds access. So fix this by providing a sentinel element.
CVE-2022-49945 1 Linux 1 Linux Kernel 2025-11-14 7.1 High
In the Linux kernel, the following vulnerability has been resolved: hwmon: (gpio-fan) Fix array out of bounds access The driver does not check if the cooling state passed to gpio_fan_set_cur_state() exceeds the maximum cooling state as stored in fan_data->num_speeds. Since the cooling state is later used as an array index in set_fan_speed(), an array out of bounds access can occur. This can be exploited by setting the state of the thermal cooling device to arbitrary values, causing for example a kernel oops when unavailable memory is accessed this way. Example kernel oops: [ 807.987276] Unable to handle kernel paging request at virtual address ffffff80d0588064 [ 807.987369] Mem abort info: [ 807.987398] ESR = 0x96000005 [ 807.987428] EC = 0x25: DABT (current EL), IL = 32 bits [ 807.987477] SET = 0, FnV = 0 [ 807.987507] EA = 0, S1PTW = 0 [ 807.987536] FSC = 0x05: level 1 translation fault [ 807.987570] Data abort info: [ 807.987763] ISV = 0, ISS = 0x00000005 [ 807.987801] CM = 0, WnR = 0 [ 807.987832] swapper pgtable: 4k pages, 39-bit VAs, pgdp=0000000001165000 [ 807.987872] [ffffff80d0588064] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000 [ 807.987961] Internal error: Oops: 96000005 [#1] PREEMPT SMP [ 807.987992] Modules linked in: cmac algif_hash aes_arm64 algif_skcipher af_alg bnep hci_uart btbcm bluetooth ecdh_generic ecc 8021q garp stp llc snd_soc_hdmi_codec brcmfmac vc4 brcmutil cec drm_kms_helper snd_soc_core cfg80211 snd_compress bcm2835_codec(C) snd_pcm_dmaengine syscopyarea bcm2835_isp(C) bcm2835_v4l2(C) sysfillrect v4l2_mem2mem bcm2835_mmal_vchiq(C) raspberrypi_hwmon sysimgblt videobuf2_dma_contig videobuf2_vmalloc fb_sys_fops videobuf2_memops rfkill videobuf2_v4l2 videobuf2_common i2c_bcm2835 snd_bcm2835(C) videodev snd_pcm snd_timer snd mc vc_sm_cma(C) gpio_fan uio_pdrv_genirq uio drm fuse drm_panel_orientation_quirks backlight ip_tables x_tables ipv6 [ 807.988508] CPU: 0 PID: 1321 Comm: bash Tainted: G C 5.15.56-v8+ #1575 [ 807.988548] Hardware name: Raspberry Pi 3 Model B Rev 1.2 (DT) [ 807.988574] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 807.988608] pc : set_fan_speed.part.5+0x34/0x80 [gpio_fan] [ 807.988654] lr : gpio_fan_set_cur_state+0x34/0x50 [gpio_fan] [ 807.988691] sp : ffffffc008cf3bd0 [ 807.988710] x29: ffffffc008cf3bd0 x28: ffffff80019edac0 x27: 0000000000000000 [ 807.988762] x26: 0000000000000000 x25: 0000000000000000 x24: ffffff800747c920 [ 807.988787] x23: 000000000000000a x22: ffffff800369f000 x21: 000000001999997c [ 807.988854] x20: ffffff800369f2e8 x19: ffffff8002ae8080 x18: 0000000000000000 [ 807.988877] x17: 0000000000000000 x16: 0000000000000000 x15: 000000559e271b70 [ 807.988938] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 [ 807.988960] x11: 0000000000000000 x10: ffffffc008cf3c20 x9 : ffffffcfb60c741c [ 807.989018] x8 : 000000000000000a x7 : 00000000ffffffc9 x6 : 0000000000000009 [ 807.989040] x5 : 000000000000002a x4 : 0000000000000000 x3 : ffffff800369f2e8 [ 807.989062] x2 : 000000000000e780 x1 : 0000000000000001 x0 : ffffff80d0588060 [ 807.989084] Call trace: [ 807.989091] set_fan_speed.part.5+0x34/0x80 [gpio_fan] [ 807.989113] gpio_fan_set_cur_state+0x34/0x50 [gpio_fan] [ 807.989199] cur_state_store+0x84/0xd0 [ 807.989221] dev_attr_store+0x20/0x38 [ 807.989262] sysfs_kf_write+0x4c/0x60 [ 807.989282] kernfs_fop_write_iter+0x130/0x1c0 [ 807.989298] new_sync_write+0x10c/0x190 [ 807.989315] vfs_write+0x254/0x378 [ 807.989362] ksys_write+0x70/0xf8 [ 807.989379] __arm64_sys_write+0x24/0x30 [ 807.989424] invoke_syscall+0x4c/0x110 [ 807.989442] el0_svc_common.constprop.3+0xfc/0x120 [ 807.989458] do_el0_svc+0x2c/0x90 [ 807.989473] el0_svc+0x24/0x60 [ 807.989544] el0t_64_sync_handler+0x90/0xb8 [ 807.989558] el0t_64_sync+0x1a0/0x1a4 [ 807.989579] Code: b9403801 f9402800 7100003f 8b35cc00 (b9400416) [ 807.989627] ---[ end t ---truncated---
CVE-2025-40843 1 Ericsson 1 Codechecker 2025-11-14 5.9 Medium
CodeChecker is an analyzer tooling, defect database and viewer extension for the Clang Static Analyzer and Clang Tidy. CodeChecker versions up to 6.26.1 contain a buffer overflow vulnerability in the internal ldlogger library, which is executed by the CodeChecker log command. This issue affects CodeChecker: through 6.26.1.
CVE-2025-60679 1 D-link 1 Dir-816a2 2025-11-14 8.8 High
A stack buffer overflow vulnerability exists in the D-Link DIR-816A2 router firmware DIR-816A2_FWv1.10CNB05_R1B011D88210.img in the upload.cgi module, which handles firmware version information. The vulnerability occurs because /proc/version is read into a 512-byte buffer and then concatenated using sprintf() into another 512-byte buffer containing a 29-byte constant. Input exceeding 481 bytes triggers a stack buffer overflow, allowing an attacker who can control /proc/version content to potentially execute arbitrary code on the device.
CVE-2025-60674 1 Dlink 2 Dir-878, Dir-878 Firmware 2025-11-14 6.8 Medium
A stack buffer overflow vulnerability exists in the D-Link DIR-878A1 router firmware FW101B04.bin in the rc binary's USB storage handling module. The vulnerability occurs when the "Serial Number" field from a USB device is read via sscanf into a 64-byte stack buffer, while fgets reads up to 127 bytes, causing a stack overflow. An attacker with physical access or control over a USB device can exploit this vulnerability to potentially execute arbitrary code on the device.
CVE-2022-49985 1 Linux 1 Linux Kernel 2025-11-14 7.1 High
In the Linux kernel, the following vulnerability has been resolved: bpf: Don't use tnum_range on array range checking for poke descriptors Hsin-Wei reported a KASAN splat triggered by their BPF runtime fuzzer which is based on a customized syzkaller: BUG: KASAN: slab-out-of-bounds in bpf_int_jit_compile+0x1257/0x13f0 Read of size 8 at addr ffff888004e90b58 by task syz-executor.0/1489 CPU: 1 PID: 1489 Comm: syz-executor.0 Not tainted 5.19.0 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x9c/0xc9 print_address_description.constprop.0+0x1f/0x1f0 ? bpf_int_jit_compile+0x1257/0x13f0 kasan_report.cold+0xeb/0x197 ? kvmalloc_node+0x170/0x200 ? bpf_int_jit_compile+0x1257/0x13f0 bpf_int_jit_compile+0x1257/0x13f0 ? arch_prepare_bpf_dispatcher+0xd0/0xd0 ? rcu_read_lock_sched_held+0x43/0x70 bpf_prog_select_runtime+0x3e8/0x640 ? bpf_obj_name_cpy+0x149/0x1b0 bpf_prog_load+0x102f/0x2220 ? __bpf_prog_put.constprop.0+0x220/0x220 ? find_held_lock+0x2c/0x110 ? __might_fault+0xd6/0x180 ? lock_downgrade+0x6e0/0x6e0 ? lock_is_held_type+0xa6/0x120 ? __might_fault+0x147/0x180 __sys_bpf+0x137b/0x6070 ? bpf_perf_link_attach+0x530/0x530 ? new_sync_read+0x600/0x600 ? __fget_files+0x255/0x450 ? lock_downgrade+0x6e0/0x6e0 ? fput+0x30/0x1a0 ? ksys_write+0x1a8/0x260 __x64_sys_bpf+0x7a/0xc0 ? syscall_enter_from_user_mode+0x21/0x70 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f917c4e2c2d The problem here is that a range of tnum_range(0, map->max_entries - 1) has limited ability to represent the concrete tight range with the tnum as the set of resulting states from value + mask can result in a superset of the actual intended range, and as such a tnum_in(range, reg->var_off) check may yield true when it shouldn't, for example tnum_range(0, 2) would result in 00XX -> v = 0000, m = 0011 such that the intended set of {0, 1, 2} is here represented by a less precise superset of {0, 1, 2, 3}. As the register is known const scalar, really just use the concrete reg->var_off.value for the upper index check.
CVE-2022-49961 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-14 7.1 High
In the Linux kernel, the following vulnerability has been resolved: bpf: Do mark_chain_precision for ARG_CONST_ALLOC_SIZE_OR_ZERO Precision markers need to be propagated whenever we have an ARG_CONST_* style argument, as the verifier cannot consider imprecise scalars to be equivalent for the purposes of states_equal check when such arguments refine the return value (in this case, set mem_size for PTR_TO_MEM). The resultant mem_size for the R0 is derived from the constant value, and if the verifier incorrectly prunes states considering them equivalent where such arguments exist (by seeing that both registers have reg->precise as false in regsafe), we can end up with invalid programs passing the verifier which can do access beyond what should have been the correct mem_size in that explored state. To show a concrete example of the problem: 0000000000000000 <prog>: 0: r2 = *(u32 *)(r1 + 80) 1: r1 = *(u32 *)(r1 + 76) 2: r3 = r1 3: r3 += 4 4: if r3 > r2 goto +18 <LBB5_5> 5: w2 = 0 6: *(u32 *)(r1 + 0) = r2 7: r1 = *(u32 *)(r1 + 0) 8: r2 = 1 9: if w1 == 0 goto +1 <LBB5_3> 10: r2 = -1 0000000000000058 <LBB5_3>: 11: r1 = 0 ll 13: r3 = 0 14: call bpf_ringbuf_reserve 15: if r0 == 0 goto +7 <LBB5_5> 16: r1 = r0 17: r1 += 16777215 18: w2 = 0 19: *(u8 *)(r1 + 0) = r2 20: r1 = r0 21: r2 = 0 22: call bpf_ringbuf_submit 00000000000000b8 <LBB5_5>: 23: w0 = 0 24: exit For the first case, the single line execution's exploration will prune the search at insn 14 for the branch insn 9's second leg as it will be verified first using r2 = -1 (UINT_MAX), while as w1 at insn 9 will always be 0 so at runtime we don't get error for being greater than UINT_MAX/4 from bpf_ringbuf_reserve. The verifier during regsafe just sees reg->precise as false for both r2 registers in both states, hence considers them equal for purposes of states_equal. If we propagated precise markers using the backtracking support, we would use the precise marking to then ensure that old r2 (UINT_MAX) was within the new r2 (1) and this would never be true, so the verification would rightfully fail. The end result is that the out of bounds access at instruction 19 would be permitted without this fix. Note that reg->precise is always set to true when user does not have CAP_BPF (or when subprog count is greater than 1 (i.e. use of any static or global functions)), hence this is only a problem when precision marks need to be explicitly propagated (i.e. privileged users with CAP_BPF). A simplified test case has been included in the next patch to prevent future regressions.
CVE-2025-62689 1 Gnu 1 Libmicrohttpd 2025-11-14 5.3 Medium
NULL pointer dereference vulnerability exists in GNU libmicrohttpd v1.0.2 and earlier. The vulnerability was fixed in commit ff13abc on the master branch of the libmicrohttpd Git repository, after the v1.0.2 tag. A specially crafted packet sent by an attacker could cause a denial-of-service (DoS) condition.
CVE-2025-9524 1 Axis 1 Axis Os 2025-11-14 4.3 Medium
The VAPIX API port.cgi did not have sufficient input validation, which may result in process crashes and impact usability. This vulnerability can only be exploited after authenticating with a viewer- operator- or administrator-privileged service account.
CVE-2025-60699 1 Totolink 2 A950rg, A950rg Firmware 2025-11-14 6.5 Medium
A buffer overflow vulnerability exists in the TOTOLINK A950RG Router firmware V5.9c.4592_B20191022_ALL within the `global.so` binary. The `getSaveConfig` function retrieves the `http_host` parameter from user input via `websGetVar` and copies it into a fixed-size stack buffer (`v13`) using `strcpy()` without performing any length checks. An unauthenticated remote attacker can exploit this vulnerability by sending a specially crafted HTTP request to the router's web interface, potentially leading to arbitrary code execution.
CVE-2024-36913 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-11-14 8.1 High
In the Linux kernel, the following vulnerability has been resolved: Drivers: hv: vmbus: Leak pages if set_memory_encrypted() fails In CoCo VMs it is possible for the untrusted host to cause set_memory_encrypted() or set_memory_decrypted() to fail such that an error is returned and the resulting memory is shared. Callers need to take care to handle these errors to avoid returning decrypted (shared) memory to the page allocator, which could lead to functional or security issues. VMBus code could free decrypted pages if set_memory_encrypted()/decrypted() fails. Leak the pages if this happens.
CVE-2025-37973 1 Linux 1 Linux Kernel 2025-11-14 7.1 High
In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: fix out-of-bounds access during multi-link element defragmentation Currently during the multi-link element defragmentation process, the multi-link element length added to the total IEs length when calculating the length of remaining IEs after the multi-link element in cfg80211_defrag_mle(). This could lead to out-of-bounds access if the multi-link element or its corresponding fragment elements are the last elements in the IEs buffer. To address this issue, correctly calculate the remaining IEs length by deducting the multi-link element end offset from total IEs end offset.
CVE-2025-37975 1 Linux 1 Linux Kernel 2025-11-14 7.1 High
In the Linux kernel, the following vulnerability has been resolved: riscv: module: Fix out-of-bounds relocation access The current code allows rel[j] to access one element past the end of the relocation section. Simplify to num_relocations which is equivalent to the existing size expression.