| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A logic issue was addressed with improved checks. This issue is fixed in macOS Big Sur 11.6.8, macOS Monterey 12.5, Security Update 2022-005 Catalina. An archive may be able to bypass Gatekeeper. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/fred: Clear WFE in missing-ENDBRANCH #CPs
An indirect branch instruction sets the CPU indirect branch tracker
(IBT) into WAIT_FOR_ENDBRANCH (WFE) state and WFE stays asserted
across the instruction boundary. When the decoder finds an
inappropriate instruction while WFE is set ENDBR, the CPU raises a #CP
fault.
For the "kernel IBT no ENDBR" selftest where #CPs are deliberately
triggered, the WFE state of the interrupted context needs to be
cleared to let execution continue. Otherwise when the CPU resumes
from the instruction that just caused the previous #CP, another
missing-ENDBRANCH #CP is raised and the CPU enters a dead loop.
This is not a problem with IDT because it doesn't preserve WFE and
IRET doesn't set WFE. But FRED provides space on the entry stack
(in an expanded CS area) to save and restore the WFE state, thus the
WFE state is no longer clobbered, so software must clear it.
Clear WFE to avoid dead looping in ibt_clear_fred_wfe() and the
!ibt_fatal code path when execution is allowed to continue.
Clobbering WFE in any other circumstance is a security-relevant bug.
[ dhansen: changelog rewording ] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/fbdev-dma: Only cleanup deferred I/O if necessary
Commit 5a498d4d06d6 ("drm/fbdev-dma: Only install deferred I/O if
necessary") initializes deferred I/O only if it is used.
drm_fbdev_dma_fb_destroy() however calls fb_deferred_io_cleanup()
unconditionally with struct fb_info.fbdefio == NULL. KASAN with the
out-of-tree Apple silicon display driver posts following warning from
__flush_work() of a random struct work_struct instead of the expected
NULL pointer derefs.
[ 22.053799] ------------[ cut here ]------------
[ 22.054832] WARNING: CPU: 2 PID: 1 at kernel/workqueue.c:4177 __flush_work+0x4d8/0x580
[ 22.056597] Modules linked in: uhid bnep uinput nls_ascii ip6_tables ip_tables i2c_dev loop fuse dm_multipath nfnetlink zram hid_magicmouse btrfs xor xor_neon brcmfmac_wcc raid6_pq hci_bcm4377 bluetooth brcmfmac hid_apple brcmutil nvmem_spmi_mfd simple_mfd_spmi dockchannel_hid cfg80211 joydev regmap_spmi nvme_apple ecdh_generic ecc macsmc_hid rfkill dwc3 appledrm snd_soc_macaudio macsmc_power nvme_core apple_isp phy_apple_atc apple_sart apple_rtkit_helper apple_dockchannel tps6598x macsmc_hwmon snd_soc_cs42l84 videobuf2_v4l2 spmi_apple_controller nvmem_apple_efuses videobuf2_dma_sg apple_z2 videobuf2_memops spi_nor panel_summit videobuf2_common asahi videodev pwm_apple apple_dcp snd_soc_apple_mca apple_admac spi_apple clk_apple_nco i2c_pasemi_platform snd_pcm_dmaengine mc i2c_pasemi_core mux_core ofpart adpdrm drm_dma_helper apple_dart apple_soc_cpufreq leds_pwm phram
[ 22.073768] CPU: 2 UID: 0 PID: 1 Comm: systemd-shutdow Not tainted 6.11.2-asahi+ #asahi-dev
[ 22.075612] Hardware name: Apple MacBook Pro (13-inch, M2, 2022) (DT)
[ 22.077032] pstate: 01400005 (nzcv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 22.078567] pc : __flush_work+0x4d8/0x580
[ 22.079471] lr : __flush_work+0x54/0x580
[ 22.080345] sp : ffffc000836ef820
[ 22.081089] x29: ffffc000836ef880 x28: 0000000000000000 x27: ffff80002ddb7128
[ 22.082678] x26: dfffc00000000000 x25: 1ffff000096f0c57 x24: ffffc00082d3e358
[ 22.084263] x23: ffff80004b7862b8 x22: dfffc00000000000 x21: ffff80005aa1d470
[ 22.085855] x20: ffff80004b786000 x19: ffff80004b7862a0 x18: 0000000000000000
[ 22.087439] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000005
[ 22.089030] x14: 1ffff800106ddf0a x13: 0000000000000000 x12: 0000000000000000
[ 22.090618] x11: ffffb800106ddf0f x10: dfffc00000000000 x9 : 1ffff800106ddf0e
[ 22.092206] x8 : 0000000000000000 x7 : aaaaaaaaaaaaaaaa x6 : 0000000000000001
[ 22.093790] x5 : ffffc000836ef728 x4 : 0000000000000000 x3 : 0000000000000020
[ 22.095368] x2 : 0000000000000008 x1 : 00000000000000aa x0 : 0000000000000000
[ 22.096955] Call trace:
[ 22.097505] __flush_work+0x4d8/0x580
[ 22.098330] flush_delayed_work+0x80/0xb8
[ 22.099231] fb_deferred_io_cleanup+0x3c/0x130
[ 22.100217] drm_fbdev_dma_fb_destroy+0x6c/0xe0 [drm_dma_helper]
[ 22.101559] unregister_framebuffer+0x210/0x2f0
[ 22.102575] drm_fb_helper_unregister_info+0x48/0x60
[ 22.103683] drm_fbdev_dma_client_unregister+0x4c/0x80 [drm_dma_helper]
[ 22.105147] drm_client_dev_unregister+0x1cc/0x230
[ 22.106217] drm_dev_unregister+0x58/0x570
[ 22.107125] apple_drm_unbind+0x50/0x98 [appledrm]
[ 22.108199] component_del+0x1f8/0x3a8
[ 22.109042] dcp_platform_shutdown+0x24/0x38 [apple_dcp]
[ 22.110357] platform_shutdown+0x70/0x90
[ 22.111219] device_shutdown+0x368/0x4d8
[ 22.112095] kernel_restart+0x6c/0x1d0
[ 22.112946] __arm64_sys_reboot+0x1c8/0x328
[ 22.113868] invoke_syscall+0x78/0x1a8
[ 22.114703] do_el0_svc+0x124/0x1a0
[ 22.115498] el0_svc+0x3c/0xe0
[ 22.116181] el0t_64_sync_handler+0x70/0xc0
[ 22.117110] el0t_64_sync+0x190/0x198
[ 22.117931] ---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
ASoc: PCM6240: Return directly after a failed devm_kzalloc() in pcmdevice_i2c_probe()
The value “-ENOMEM” was assigned to the local variable “ret”
in one if branch after a devm_kzalloc() call failed at the beginning.
This error code will trigger then a pcmdevice_remove() call with a passed
null pointer so that an undesirable dereference will be performed.
Thus return the appropriate error code directly. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ice: Fix potential NULL pointer dereference in ice_bridge_setlink()
The function ice_bridge_setlink() may encounter a NULL pointer dereference
if nlmsg_find_attr() returns NULL and br_spec is dereferenced subsequently
in nla_for_each_nested(). To address this issue, add a check to ensure that
br_spec is not NULL before proceeding with the nested attribute iteration. |
| Microsoft Edge (Chromium-based) Information Disclosure Vulnerability |
| Microsoft Edge (Chromium-based) Security Feature Bypass Vulnerability |
| Secure Boot Security Feature Bypass Vulnerability |
| Secure Boot Security Feature Bypass Vulnerability |
| Secure Boot Security Feature Bypass Vulnerability |
| Secure Boot Security Feature Bypass Vulnerability |
| Secure Boot Security Feature Bypass Vulnerability |
| BitLocker Security Feature Bypass Vulnerability |
| Secure Boot Security Feature Bypass Vulnerability |
| Microsoft Bing Search Spoofing Vulnerability |
| Windows Mark of the Web Security Feature Bypass Vulnerability |
| User login brute force protection functionality bypass
|
| Proofpoint Enterprise Protection before 18.8.0 allows a Bypass of a Security Control. |
| An issue was discovered in Open5GS v2.7.2. When a UE switches between two gNBs and sends a handover request at a specific time, it may cause an exception in the AMF's internal state machine, leading to an AMF crash and resulting in a Denial of Service (DoS). |
| A vulnerability exists which could allow an unauthorized user to learn aspects of the communication protocol used to pair system components while the pump is being paired with other system components. Exploitation requires nearby wireless signal proximity with the patient and the device; advanced technical knowledge is required for exploitation. Please refer to the Medtronic Product Security Bulletin for guidance
|