| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A heap double free issue was found in Opensc before version 0.22.0 in sc_pkcs15_free_tokeninfo. |
| Python 3.x through 3.10 has an open redirection vulnerability in lib/http/server.py due to no protection against multiple (/) at the beginning of URI path which may leads to information disclosure. NOTE: this is disputed by a third party because the http.server.html documentation page states "Warning: http.server is not recommended for production. It only implements basic security checks." |
| The SingleDocParser::HandleFlowSequence function in yaml-cpp (aka LibYaml-C++) 0.6.2 allows remote attackers to cause a denial of service (stack consumption and application crash) via a crafted YAML file. |
| The SingleDocParser::HandleNode function in yaml-cpp (aka LibYaml-C++) 0.5.3 allows remote attackers to cause a denial of service (stack consumption and application crash) via a crafted YAML file. |
| The issue was addressed with improved input validation. This issue is fixed in Safari 18.4, visionOS 2.4, iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4. A malicious website may be able to claim WebAuthn credentials from another website that shares a registrable suffix. |
| A reachable assertion in FFmpeg git-master commit N-113007-g8d24a28d06 allows attackers to cause a Denial of Service (DoS) via opening a crafted AAC file. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: reject mismatching sum of field_len with set key length
The field length description provides the length of each separated key
field in the concatenation, each field gets rounded up to 32-bits to
calculate the pipapo rule width from pipapo_init(). The set key length
provides the total size of the key aligned to 32-bits.
Register-based arithmetics still allows for combining mismatching set
key length and field length description, eg. set key length 10 and field
description [ 5, 4 ] leading to pipapo width of 12. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: xilinx_uartps: split sysrq handling
lockdep detects the following circular locking dependency:
CPU 0 CPU 1
========================== ============================
cdns_uart_isr() printk()
uart_port_lock(port) console_lock()
cdns_uart_console_write()
if (!port->sysrq)
uart_port_lock(port)
uart_handle_break()
port->sysrq = ...
uart_handle_sysrq_char()
printk()
console_lock()
The fixed commit attempts to avoid this situation by only taking the
port lock in cdns_uart_console_write if port->sysrq unset. However, if
(as shown above) cdns_uart_console_write runs before port->sysrq is set,
then it will try to take the port lock anyway. This may result in a
deadlock.
Fix this by splitting sysrq handling into two parts. We use the prepare
helper under the port lock and defer handling until we release the lock. |
| When curl is asked to use HSTS, the expiry time for a subdomain might
overwrite a parent domain's cache entry, making it end sooner or later than
otherwise intended.
This affects curl using applications that enable HSTS and use URLs with the
insecure `HTTP://` scheme and perform transfers with hosts like
`x.example.com` as well as `example.com` where the first host is a subdomain
of the second host.
(The HSTS cache either needs to have been populated manually or there needs to
have been previous HTTPS accesses done as the cache needs to have entries for
the domains involved to trigger this problem.)
When `x.example.com` responds with `Strict-Transport-Security:` headers, this
bug can make the subdomain's expiry timeout *bleed over* and get set for the
parent domain `example.com` in curl's HSTS cache.
The result of a triggered bug is that HTTP accesses to `example.com` get
converted to HTTPS for a different period of time than what was asked for by
the origin server. If `example.com` for example stops supporting HTTPS at its
expiry time, curl might then fail to access `http://example.com` until the
(wrongly set) timeout expires. This bug can also expire the parent's entry
*earlier*, thus making curl inadvertently switch back to insecure HTTP earlier
than otherwise intended. |
| In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic-v3-its: Don't enable interrupts in its_irq_set_vcpu_affinity()
The following call-chain leads to enabling interrupts in a nested interrupt
disabled section:
irq_set_vcpu_affinity()
irq_get_desc_lock()
raw_spin_lock_irqsave() <--- Disable interrupts
its_irq_set_vcpu_affinity()
guard(raw_spinlock_irq) <--- Enables interrupts when leaving the guard()
irq_put_desc_unlock() <--- Warns because interrupts are enabled
This was broken in commit b97e8a2f7130, which replaced the original
raw_spin_[un]lock() pair with guard(raw_spinlock_irq).
Fix the issue by using guard(raw_spinlock).
[ tglx: Massaged change log ] |
| In the Linux kernel, the following vulnerability has been resolved:
virtio-blk: don't keep queue frozen during system suspend
Commit 4ce6e2db00de ("virtio-blk: Ensure no requests in virtqueues before
deleting vqs.") replaces queue quiesce with queue freeze in virtio-blk's
PM callbacks. And the motivation is to drain inflight IOs before suspending.
block layer's queue freeze looks very handy, but it is also easy to cause
deadlock, such as, any attempt to call into bio_queue_enter() may run into
deadlock if the queue is frozen in current context. There are all kinds
of ->suspend() called in suspend context, so keeping queue frozen in the
whole suspend context isn't one good idea. And Marek reported lockdep
warning[1] caused by virtio-blk's freeze queue in virtblk_freeze().
[1] https://lore.kernel.org/linux-block/ca16370e-d646-4eee-b9cc-87277c89c43c@samsung.com/
Given the motivation is to drain in-flight IOs, it can be done by calling
freeze & unfreeze, meantime restore to previous behavior by keeping queue
quiesced during suspend. |
| In the Linux kernel, the following vulnerability has been resolved:
selinux: ignore unknown extended permissions
When evaluating extended permissions, ignore unknown permissions instead
of calling BUG(). This commit ensures that future permissions can be
added without interfering with older kernels. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Have process_string() also allow arrays
In order to catch a common bug where a TRACE_EVENT() TP_fast_assign()
assigns an address of an allocated string to the ring buffer and then
references it in TP_printk(), which can be executed hours later when the
string is free, the function test_event_printk() runs on all events as
they are registered to make sure there's no unwanted dereferencing.
It calls process_string() to handle cases in TP_printk() format that has
"%s". It returns whether or not the string is safe. But it can have some
false positives.
For instance, xe_bo_move() has:
TP_printk("move_lacks_source:%s, migrate object %p [size %zu] from %s to %s device_id:%s",
__entry->move_lacks_source ? "yes" : "no", __entry->bo, __entry->size,
xe_mem_type_to_name[__entry->old_placement],
xe_mem_type_to_name[__entry->new_placement], __get_str(device_id))
Where the "%s" references into xe_mem_type_to_name[]. This is an array of
pointers that should be safe for the event to access. Instead of flagging
this as a bad reference, if a reference points to an array, where the
record field is the index, consider it safe. |
| In the Linux kernel, the following vulnerability has been resolved:
dm array: fix releasing a faulty array block twice in dm_array_cursor_end
When dm_bm_read_lock() fails due to locking or checksum errors, it
releases the faulty block implicitly while leaving an invalid output
pointer behind. The caller of dm_bm_read_lock() should not operate on
this invalid dm_block pointer, or it will lead to undefined result.
For example, the dm_array_cursor incorrectly caches the invalid pointer
on reading a faulty array block, causing a double release in
dm_array_cursor_end(), then hitting the BUG_ON in dm-bufio cache_put().
Reproduce steps:
1. initialize a cache device
dmsetup create cmeta --table "0 8192 linear /dev/sdc 0"
dmsetup create cdata --table "0 65536 linear /dev/sdc 8192"
dmsetup create corig --table "0 524288 linear /dev/sdc $262144"
dd if=/dev/zero of=/dev/mapper/cmeta bs=4k count=1
dmsetup create cache --table "0 524288 cache /dev/mapper/cmeta \
/dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0"
2. wipe the second array block offline
dmsteup remove cache cmeta cdata corig
mapping_root=$(dd if=/dev/sdc bs=1c count=8 skip=192 \
2>/dev/null | hexdump -e '1/8 "%u\n"')
ablock=$(dd if=/dev/sdc bs=1c count=8 skip=$((4096*mapping_root+2056)) \
2>/dev/null | hexdump -e '1/8 "%u\n"')
dd if=/dev/zero of=/dev/sdc bs=4k count=1 seek=$ablock
3. try reopen the cache device
dmsetup create cmeta --table "0 8192 linear /dev/sdc 0"
dmsetup create cdata --table "0 65536 linear /dev/sdc 8192"
dmsetup create corig --table "0 524288 linear /dev/sdc $262144"
dmsetup create cache --table "0 524288 cache /dev/mapper/cmeta \
/dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0"
Kernel logs:
(snip)
device-mapper: array: array_block_check failed: blocknr 0 != wanted 10
device-mapper: block manager: array validator check failed for block 10
device-mapper: array: get_ablock failed
device-mapper: cache metadata: dm_array_cursor_next for mapping failed
------------[ cut here ]------------
kernel BUG at drivers/md/dm-bufio.c:638!
Fix by setting the cached block pointer to NULL on errors.
In addition to the reproducer described above, this fix can be
verified using the "array_cursor/damaged" test in dm-unit:
dm-unit run /pdata/array_cursor/damaged --kernel-dir <KERNEL_DIR> |
| In the Linux kernel, the following vulnerability has been resolved:
net: restrict SO_REUSEPORT to inet sockets
After blamed commit, crypto sockets could accidentally be destroyed
from RCU call back, as spotted by zyzbot [1].
Trying to acquire a mutex in RCU callback is not allowed.
Restrict SO_REUSEPORT socket option to inet sockets.
v1 of this patch supported TCP, UDP and SCTP sockets,
but fcnal-test.sh test needed RAW and ICMP support.
[1]
BUG: sleeping function called from invalid context at kernel/locking/mutex.c:562
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 24, name: ksoftirqd/1
preempt_count: 100, expected: 0
RCU nest depth: 0, expected: 0
1 lock held by ksoftirqd/1/24:
#0: ffffffff8e937ba0 (rcu_callback){....}-{0:0}, at: rcu_lock_acquire include/linux/rcupdate.h:337 [inline]
#0: ffffffff8e937ba0 (rcu_callback){....}-{0:0}, at: rcu_do_batch kernel/rcu/tree.c:2561 [inline]
#0: ffffffff8e937ba0 (rcu_callback){....}-{0:0}, at: rcu_core+0xa37/0x17a0 kernel/rcu/tree.c:2823
Preemption disabled at:
[<ffffffff8161c8c8>] softirq_handle_begin kernel/softirq.c:402 [inline]
[<ffffffff8161c8c8>] handle_softirqs+0x128/0x9b0 kernel/softirq.c:537
CPU: 1 UID: 0 PID: 24 Comm: ksoftirqd/1 Not tainted 6.13.0-rc3-syzkaller-00174-ga024e377efed #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
__might_resched+0x5d4/0x780 kernel/sched/core.c:8758
__mutex_lock_common kernel/locking/mutex.c:562 [inline]
__mutex_lock+0x131/0xee0 kernel/locking/mutex.c:735
crypto_put_default_null_skcipher+0x18/0x70 crypto/crypto_null.c:179
aead_release+0x3d/0x50 crypto/algif_aead.c:489
alg_do_release crypto/af_alg.c:118 [inline]
alg_sock_destruct+0x86/0xc0 crypto/af_alg.c:502
__sk_destruct+0x58/0x5f0 net/core/sock.c:2260
rcu_do_batch kernel/rcu/tree.c:2567 [inline]
rcu_core+0xaaa/0x17a0 kernel/rcu/tree.c:2823
handle_softirqs+0x2d4/0x9b0 kernel/softirq.c:561
run_ksoftirqd+0xca/0x130 kernel/softirq.c:950
smpboot_thread_fn+0x544/0xa30 kernel/smpboot.c:164
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: mcp23s08: Fix sleeping in atomic context due to regmap locking
If a device uses MCP23xxx IO expander to receive IRQs, the following
bug can happen:
BUG: sleeping function called from invalid context
at kernel/locking/mutex.c:283
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, ...
preempt_count: 1, expected: 0
...
Call Trace:
...
__might_resched+0x104/0x10e
__might_sleep+0x3e/0x62
mutex_lock+0x20/0x4c
regmap_lock_mutex+0x10/0x18
regmap_update_bits_base+0x2c/0x66
mcp23s08_irq_set_type+0x1ae/0x1d6
__irq_set_trigger+0x56/0x172
__setup_irq+0x1e6/0x646
request_threaded_irq+0xb6/0x160
...
We observed the problem while experimenting with a touchscreen driver which
used MCP23017 IO expander (I2C).
The regmap in the pinctrl-mcp23s08 driver uses a mutex for protection from
concurrent accesses, which is the default for regmaps without .fast_io,
.disable_locking, etc.
mcp23s08_irq_set_type() calls regmap_update_bits_base(), and the latter
locks the mutex.
However, __setup_irq() locks desc->lock spinlock before calling these
functions. As a result, the system tries to lock the mutex whole holding
the spinlock.
It seems, the internal regmap locks are not needed in this driver at all.
mcp->lock seems to protect the regmap from concurrent accesses already,
except, probably, in mcp_pinconf_get/set.
mcp23s08_irq_set_type() and mcp23s08_irq_mask/unmask() are called under
chip_bus_lock(), which calls mcp23s08_irq_bus_lock(). The latter takes
mcp->lock and enables regmap caching, so that the potentially slow I2C
accesses are deferred until chip_bus_unlock().
The accesses to the regmap from mcp23s08_probe_one() do not need additional
locking.
In all remaining places where the regmap is accessed, except
mcp_pinconf_get/set(), the driver already takes mcp->lock.
This patch adds locking in mcp_pinconf_get/set() and disables internal
locking in the regmap config. Among other things, it fixes the sleeping
in atomic context described above. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/entry: Mark IRQ entries to fix stack depot warnings
The stack depot filters out everything outside of the top interrupt
context as an uninteresting or irrelevant part of the stack traces. This
helps with stack trace de-duplication, avoiding an explosion of saved
stack traces that share the same IRQ context code path but originate
from different randomly interrupted points, eventually exhausting the
stack depot.
Filtering uses in_irqentry_text() to identify functions within the
.irqentry.text and .softirqentry.text sections, which then become the
last stack trace entries being saved.
While __do_softirq() is placed into the .softirqentry.text section by
common code, populating .irqentry.text is architecture-specific.
Currently, the .irqentry.text section on s390 is empty, which prevents
stack depot filtering and de-duplication and could result in warnings
like:
Stack depot reached limit capacity
WARNING: CPU: 0 PID: 286113 at lib/stackdepot.c:252 depot_alloc_stack+0x39a/0x3c8
with PREEMPT and KASAN enabled.
Fix this by moving the IO/EXT interrupt handlers from .kprobes.text into
the .irqentry.text section and updating the kprobes blacklist to include
the .irqentry.text section.
This is done only for asynchronous interrupts and explicitly not for
program checks, which are synchronous and where the context beyond the
program check is important to preserve. Despite machine checks being
somewhat in between, they are extremely rare, and preserving context
when possible is also of value.
SVCs and Restart Interrupts are not relevant, one being always at the
boundary to user space and the other being a one-time thing.
IRQ entries filtering is also optionally used in ftrace function graph,
where the same logic applies. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: megaraid_sas: Fix for a potential deadlock
This fixes a 'possible circular locking dependency detected' warning
CPU0 CPU1
---- ----
lock(&instance->reset_mutex);
lock(&shost->scan_mutex);
lock(&instance->reset_mutex);
lock(&shost->scan_mutex);
Fix this by temporarily releasing the reset_mutex. |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: check return value of sock_recvmsg when draining clc data
When receiving clc msg, the field length in smc_clc_msg_hdr indicates the
length of msg should be received from network and the value should not be
fully trusted as it is from the network. Once the value of length exceeds
the value of buflen in function smc_clc_wait_msg it may run into deadloop
when trying to drain the remaining data exceeding buflen.
This patch checks the return value of sock_recvmsg when draining data in
case of deadloop in draining. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_socket: remove WARN_ON_ONCE on maximum cgroup level
cgroup maximum depth is INT_MAX by default, there is a cgroup toggle to
restrict this maximum depth to a more reasonable value not to harm
performance. Remove unnecessary WARN_ON_ONCE which is reachable from
userspace. |