Filtered by vendor Redhat Subscriptions
Filtered by product Rhel Eus Subscriptions
Total 2547 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2023-6356 3 Debian, Linux, Redhat 20 Debian Linux, Linux Kernel, Codeready Linux Builder Eus and 17 more 2024-11-15 6.5 Medium
A flaw was found in the Linux kernel's NVMe driver. This issue may allow an unauthenticated malicious actor to send a set of crafted TCP packages when using NVMe over TCP, leading the NVMe driver to a NULL pointer dereference in the NVMe driver and causing kernel panic and a denial of service.
CVE-2023-6240 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2024-11-15 6.5 Medium
A Marvin vulnerability side-channel leakage was found in the RSA decryption operation in the Linux Kernel. This issue may allow a network attacker to decrypt ciphertexts or forge signatures, limiting the services that use that private key.
CVE-2023-5870 2 Postgresql, Redhat 22 Postgresql, Advanced Cluster Security, Codeready Linux Builder Eus and 19 more 2024-11-15 2.2 Low
A flaw was found in PostgreSQL involving the pg_cancel_backend role that signals background workers, including the logical replication launcher, autovacuum workers, and the autovacuum launcher. Successful exploitation requires a non-core extension with a less-resilient background worker and would affect that specific background worker only. This issue may allow a remote high privileged user to launch a denial of service (DoS) attack.
CVE-2023-5869 2 Postgresql, Redhat 27 Postgresql, Advanced Cluster Security, Codeready Linux Builder Eus and 24 more 2024-11-15 8.8 High
A flaw was found in PostgreSQL that allows authenticated database users to execute arbitrary code through missing overflow checks during SQL array value modification. This issue exists due to an integer overflow during array modification where a remote user can trigger the overflow by providing specially crafted data. This enables the execution of arbitrary code on the target system, allowing users to write arbitrary bytes to memory and extensively read the server's memory.
CVE-2023-5868 2 Postgresql, Redhat 22 Postgresql, Advanced Cluster Security, Codeready Linux Builder Eus and 19 more 2024-11-15 4.3 Medium
A memory disclosure vulnerability was found in PostgreSQL that allows remote users to access sensitive information by exploiting certain aggregate function calls with 'unknown'-type arguments. Handling 'unknown'-type values from string literals without type designation can disclose bytes, potentially revealing notable and confidential information. This issue exists due to excessive data output in aggregate function calls, enabling remote users to read some portion of system memory.
CVE-2023-5633 2 Linux, Redhat 23 Linux Kernel, Codeready Linux Builder, Codeready Linux Builder Eus and 20 more 2024-11-15 7.8 High
The reference count changes made as part of the CVE-2023-33951 and CVE-2023-33952 fixes exposed a use-after-free flaw in the way memory objects were handled when they were being used to store a surface. When running inside a VMware guest with 3D acceleration enabled, a local, unprivileged user could potentially use this flaw to escalate their privileges.
CVE-2024-38428 2 Gnu, Redhat 6 Wget, Enterprise Linux, Rhel Aus and 3 more 2024-11-15 9.1 Critical
url.c in GNU Wget through 1.24.5 mishandles semicolons in the userinfo subcomponent of a URI, and thus there may be insecure behavior in which data that was supposed to be in the userinfo subcomponent is misinterpreted to be part of the host subcomponent.
CVE-2024-25744 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2024-11-15 8.8 High
In the Linux kernel before 6.6.7, an untrusted VMM can trigger int80 syscall handling at any given point. This is related to arch/x86/coco/tdx/tdx.c and arch/x86/mm/mem_encrypt_amd.c.
CVE-2023-5388 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-14 6.5 Medium
NSS was susceptible to a timing side-channel attack when performing RSA decryption. This attack could potentially allow an attacker to recover the private data. This vulnerability affects Firefox < 124, Firefox ESR < 115.9, and Thunderbird < 115.9.
CVE-2023-7192 2 Linux, Redhat 7 Linux Kernel, Enterprise Linux, Rhel Aus and 4 more 2024-11-14 5.5 Medium
A memory leak problem was found in ctnetlink_create_conntrack in net/netfilter/nf_conntrack_netlink.c in the Linux Kernel. This issue may allow a local attacker with CAP_NET_ADMIN privileges to cause a denial of service (DoS) attack due to a refcount overflow.
CVE-2024-38540 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-14 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: bnxt_re: avoid shift undefined behavior in bnxt_qplib_alloc_init_hwq Undefined behavior is triggered when bnxt_qplib_alloc_init_hwq is called with hwq_attr->aux_depth != 0 and hwq_attr->aux_stride == 0. In that case, "roundup_pow_of_two(hwq_attr->aux_stride)" gets called. roundup_pow_of_two is documented as undefined for 0. Fix it in the one caller that had this combination. The undefined behavior was detected by UBSAN: UBSAN: shift-out-of-bounds in ./include/linux/log2.h:57:13 shift exponent 64 is too large for 64-bit type 'long unsigned int' CPU: 24 PID: 1075 Comm: (udev-worker) Not tainted 6.9.0-rc6+ #4 Hardware name: Abacus electric, s.r.o. - servis@abacus.cz Super Server/H12SSW-iN, BIOS 2.7 10/25/2023 Call Trace: <TASK> dump_stack_lvl+0x5d/0x80 ubsan_epilogue+0x5/0x30 __ubsan_handle_shift_out_of_bounds.cold+0x61/0xec __roundup_pow_of_two+0x25/0x35 [bnxt_re] bnxt_qplib_alloc_init_hwq+0xa1/0x470 [bnxt_re] bnxt_qplib_create_qp+0x19e/0x840 [bnxt_re] bnxt_re_create_qp+0x9b1/0xcd0 [bnxt_re] ? srso_alias_return_thunk+0x5/0xfbef5 ? srso_alias_return_thunk+0x5/0xfbef5 ? __kmalloc+0x1b6/0x4f0 ? create_qp.part.0+0x128/0x1c0 [ib_core] ? __pfx_bnxt_re_create_qp+0x10/0x10 [bnxt_re] create_qp.part.0+0x128/0x1c0 [ib_core] ib_create_qp_kernel+0x50/0xd0 [ib_core] create_mad_qp+0x8e/0xe0 [ib_core] ? __pfx_qp_event_handler+0x10/0x10 [ib_core] ib_mad_init_device+0x2be/0x680 [ib_core] add_client_context+0x10d/0x1a0 [ib_core] enable_device_and_get+0xe0/0x1d0 [ib_core] ib_register_device+0x53c/0x630 [ib_core] ? srso_alias_return_thunk+0x5/0xfbef5 bnxt_re_probe+0xbd8/0xe50 [bnxt_re] ? __pfx_bnxt_re_probe+0x10/0x10 [bnxt_re] auxiliary_bus_probe+0x49/0x80 ? driver_sysfs_add+0x57/0xc0 really_probe+0xde/0x340 ? pm_runtime_barrier+0x54/0x90 ? __pfx___driver_attach+0x10/0x10 __driver_probe_device+0x78/0x110 driver_probe_device+0x1f/0xa0 __driver_attach+0xba/0x1c0 bus_for_each_dev+0x8f/0xe0 bus_add_driver+0x146/0x220 driver_register+0x72/0xd0 __auxiliary_driver_register+0x6e/0xd0 ? __pfx_bnxt_re_mod_init+0x10/0x10 [bnxt_re] bnxt_re_mod_init+0x3e/0xff0 [bnxt_re] ? __pfx_bnxt_re_mod_init+0x10/0x10 [bnxt_re] do_one_initcall+0x5b/0x310 do_init_module+0x90/0x250 init_module_from_file+0x86/0xc0 idempotent_init_module+0x121/0x2b0 __x64_sys_finit_module+0x5e/0xb0 do_syscall_64+0x82/0x160 ? srso_alias_return_thunk+0x5/0xfbef5 ? syscall_exit_to_user_mode_prepare+0x149/0x170 ? srso_alias_return_thunk+0x5/0xfbef5 ? syscall_exit_to_user_mode+0x75/0x230 ? srso_alias_return_thunk+0x5/0xfbef5 ? do_syscall_64+0x8e/0x160 ? srso_alias_return_thunk+0x5/0xfbef5 ? __count_memcg_events+0x69/0x100 ? srso_alias_return_thunk+0x5/0xfbef5 ? count_memcg_events.constprop.0+0x1a/0x30 ? srso_alias_return_thunk+0x5/0xfbef5 ? handle_mm_fault+0x1f0/0x300 ? srso_alias_return_thunk+0x5/0xfbef5 ? do_user_addr_fault+0x34e/0x640 ? srso_alias_return_thunk+0x5/0xfbef5 ? srso_alias_return_thunk+0x5/0xfbef5 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f4e5132821d Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d e3 db 0c 00 f7 d8 64 89 01 48 RSP: 002b:00007ffca9c906a8 EFLAGS: 00000246 ORIG_RAX: 0000000000000139 RAX: ffffffffffffffda RBX: 0000563ec8a8f130 RCX: 00007f4e5132821d RDX: 0000000000000000 RSI: 00007f4e518fa07d RDI: 000000000000003b RBP: 00007ffca9c90760 R08: 00007f4e513f6b20 R09: 00007ffca9c906f0 R10: 0000563ec8a8faa0 R11: 0000000000000246 R12: 00007f4e518fa07d R13: 0000000000020000 R14: 0000563ec8409e90 R15: 0000563ec8a8fa60 </TASK> ---[ end trace ]---
CVE-2023-5455 3 Fedoraproject, Freeipa, Redhat 25 Fedora, Freeipa, Codeready Linux Builder and 22 more 2024-11-14 6.5 Medium
A Cross-site request forgery vulnerability exists in ipa/session/login_password in all supported versions of IPA. This flaw allows an attacker to trick the user into submitting a request that could perform actions as the user, resulting in a loss of confidentiality and system integrity. During community penetration testing it was found that for certain HTTP end-points FreeIPA does not ensure CSRF protection. Due to implementation details one cannot use this flaw for reflection of a cookie representing already logged-in user. An attacker would always have to go through a new authentication attempt.
CVE-2024-44296 2 Apple, Redhat 9 Ipados, Iphone Os, Macos and 6 more 2024-11-14 5.4 Medium
The issue was addressed with improved checks. This issue is fixed in tvOS 18.1, iOS 18.1 and iPadOS 18.1, iOS 17.7.1 and iPadOS 17.7.1, watchOS 11.1, visionOS 2.1, macOS Sequoia 15.1, Safari 18.1. Processing maliciously crafted web content may prevent Content Security Policy from being enforced.
CVE-2024-5535 2 Openssl, Redhat 6 Openssl, Enterprise Linux, Rhel Aus and 3 more 2024-11-14 9.1 Critical
Issue summary: Calling the OpenSSL API function SSL_select_next_proto with an empty supported client protocols buffer may cause a crash or memory contents to be sent to the peer. Impact summary: A buffer overread can have a range of potential consequences such as unexpected application beahviour or a crash. In particular this issue could result in up to 255 bytes of arbitrary private data from memory being sent to the peer leading to a loss of confidentiality. However, only applications that directly call the SSL_select_next_proto function with a 0 length list of supported client protocols are affected by this issue. This would normally never be a valid scenario and is typically not under attacker control but may occur by accident in the case of a configuration or programming error in the calling application. The OpenSSL API function SSL_select_next_proto is typically used by TLS applications that support ALPN (Application Layer Protocol Negotiation) or NPN (Next Protocol Negotiation). NPN is older, was never standardised and is deprecated in favour of ALPN. We believe that ALPN is significantly more widely deployed than NPN. The SSL_select_next_proto function accepts a list of protocols from the server and a list of protocols from the client and returns the first protocol that appears in the server list that also appears in the client list. In the case of no overlap between the two lists it returns the first item in the client list. In either case it will signal whether an overlap between the two lists was found. In the case where SSL_select_next_proto is called with a zero length client list it fails to notice this condition and returns the memory immediately following the client list pointer (and reports that there was no overlap in the lists). This function is typically called from a server side application callback for ALPN or a client side application callback for NPN. In the case of ALPN the list of protocols supplied by the client is guaranteed by libssl to never be zero in length. The list of server protocols comes from the application and should never normally be expected to be of zero length. In this case if the SSL_select_next_proto function has been called as expected (with the list supplied by the client passed in the client/client_len parameters), then the application will not be vulnerable to this issue. If the application has accidentally been configured with a zero length server list, and has accidentally passed that zero length server list in the client/client_len parameters, and has additionally failed to correctly handle a "no overlap" response (which would normally result in a handshake failure in ALPN) then it will be vulnerable to this problem. In the case of NPN, the protocol permits the client to opportunistically select a protocol when there is no overlap. OpenSSL returns the first client protocol in the no overlap case in support of this. The list of client protocols comes from the application and should never normally be expected to be of zero length. However if the SSL_select_next_proto function is accidentally called with a client_len of 0 then an invalid memory pointer will be returned instead. If the application uses this output as the opportunistic protocol then the loss of confidentiality will occur. This issue has been assessed as Low severity because applications are most likely to be vulnerable if they are using NPN instead of ALPN - but NPN is not widely used. It also requires an application configuration or programming error. Finally, this issue would not typically be under attacker control making active exploitation unlikely. The FIPS modules in 3.3, 3.2, 3.1 and 3.0 are not affected by this issue. Due to the low severity of this issue we are not issuing new releases of OpenSSL at this time. The fix will be included in the next releases when they become available.
CVE-2024-1394 1 Redhat 23 Ansible Automation Platform, Ansible Automation Platform Developer, Ansible Automation Platform Inside and 20 more 2024-11-13 7.5 High
A memory leak flaw was found in Golang in the RSA encrypting/decrypting code, which might lead to a resource exhaustion vulnerability using attacker-controlled inputs​. The memory leak happens in github.com/golang-fips/openssl/openssl/rsa.go#L113. The objects leaked are pkey​ and ctx​. That function uses named return parameters to free pkey​ and ctx​ if there is an error initializing the context or setting the different properties. All return statements related to error cases follow the "return nil, nil, fail(...)" pattern, meaning that pkey​ and ctx​ will be nil inside the deferred function that should free them.
CVE-2023-4001 3 Fedoraproject, Gnu, Redhat 4 Fedora, Grub2, Enterprise Linux and 1 more 2024-11-13 6.8 Medium
An authentication bypass flaw was found in GRUB due to the way that GRUB uses the UUID of a device to search for the configuration file that contains the password hash for the GRUB password protection feature. An attacker capable of attaching an external drive such as a USB stick containing a file system with a duplicate UUID (the same as in the "/boot/" file system) can bypass the GRUB password protection feature on UEFI systems, which enumerate removable drives before non-removable ones. This issue was introduced in a downstream patch in Red Hat's version of grub2 and does not affect the upstream package.
CVE-2023-45237 2 Redhat, Tianocore 3 Enterprise Linux, Rhel Eus, Edk2 2024-11-13 5.3 Medium
EDK2's Network Package is susceptible to a predictable TCP Initial Sequence Number. This vulnerability can be exploited by an attacker to gain unauthorized access and potentially lead to a loss of Confidentiality.
CVE-2024-35884 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-13 8.8 High
In the Linux kernel, the following vulnerability has been resolved: udp: do not accept non-tunnel GSO skbs landing in a tunnel When rx-udp-gro-forwarding is enabled UDP packets might be GROed when being forwarded. If such packets might land in a tunnel this can cause various issues and udp_gro_receive makes sure this isn't the case by looking for a matching socket. This is performed in udp4/6_gro_lookup_skb but only in the current netns. This is an issue with tunneled packets when the endpoint is in another netns. In such cases the packets will be GROed at the UDP level, which leads to various issues later on. The same thing can happen with rx-gro-list. We saw this with geneve packets being GROed at the UDP level. In such case gso_size is set; later the packet goes through the geneve rx path, the geneve header is pulled, the offset are adjusted and frag_list skbs are not adjusted with regard to geneve. When those skbs hit skb_fragment, it will misbehave. Different outcomes are possible depending on what the GROed skbs look like; from corrupted packets to kernel crashes. One example is a BUG_ON[1] triggered in skb_segment while processing the frag_list. Because gso_size is wrong (geneve header was pulled) skb_segment thinks there is "geneve header size" of data in frag_list, although it's in fact the next packet. The BUG_ON itself has nothing to do with the issue. This is only one of the potential issues. Looking up for a matching socket in udp_gro_receive is fragile: the lookup could be extended to all netns (not speaking about performances) but nothing prevents those packets from being modified in between and we could still not find a matching socket. It's OK to keep the current logic there as it should cover most cases but we also need to make sure we handle tunnel packets being GROed too early. This is done by extending the checks in udp_unexpected_gso: GSO packets lacking the SKB_GSO_UDP_TUNNEL/_CSUM bits and landing in a tunnel must be segmented. [1] kernel BUG at net/core/skbuff.c:4408! RIP: 0010:skb_segment+0xd2a/0xf70 __udp_gso_segment+0xaa/0x560
CVE-2024-21012 2 Oracle, Redhat 9 Graalvm, Graalvm For Jdk, Java Se and 6 more 2024-11-13 3.7 Low
Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Networking). Supported versions that are affected are Oracle Java SE: 11.0.22, 17.0.10, 21.0.2, 22; Oracle GraalVM for JDK: 17.0.10, 21.0.2, 22; Oracle GraalVM Enterprise Edition: 20.3.13 and 21.3.9. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.1 Base Score 3.7 (Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N).
CVE-2024-0749 3 Debian, Mozilla, Redhat 9 Debian Linux, Firefox, Firefox Esr and 6 more 2024-11-13 4.3 Medium
A phishing site could have repurposed an `about:` dialog to show phishing content with an incorrect origin in the address bar. This vulnerability affects Firefox < 122 and Thunderbird < 115.7.