| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix accesses to uninit stack slots
Privileged programs are supposed to be able to read uninitialized stack
memory (ever since 6715df8d5) but, before this patch, these accesses
were permitted inconsistently. In particular, accesses were permitted
above state->allocated_stack, but not below it. In other words, if the
stack was already "large enough", the access was permitted, but
otherwise the access was rejected instead of being allowed to "grow the
stack". This undesired rejection was happening in two places:
- in check_stack_slot_within_bounds()
- in check_stack_range_initialized()
This patch arranges for these accesses to be permitted. A bunch of tests
that were relying on the old rejection had to change; all of them were
changed to add also run unprivileged, in which case the old behavior
persists. One tests couldn't be updated - global_func16 - because it
can't run unprivileged for other reasons.
This patch also fixes the tracking of the stack size for variable-offset
reads. This second fix is bundled in the same commit as the first one
because they're inter-related. Before this patch, writes to the stack
using registers containing a variable offset (as opposed to registers
with fixed, known values) were not properly contributing to the
function's needed stack size. As a result, it was possible for a program
to verify, but then to attempt to read out-of-bounds data at runtime
because a too small stack had been allocated for it.
Each function tracks the size of the stack it needs in
bpf_subprog_info.stack_depth, which is maintained by
update_stack_depth(). For regular memory accesses, check_mem_access()
was calling update_state_depth() but it was passing in only the fixed
part of the offset register, ignoring the variable offset. This was
incorrect; the minimum possible value of that register should be used
instead.
This tracking is now fixed by centralizing the tracking of stack size in
grow_stack_state(), and by lifting the calls to grow_stack_state() to
check_stack_access_within_bounds() as suggested by Andrii. The code is
now simpler and more convincingly tracks the correct maximum stack size.
check_stack_range_initialized() can now rely on enough stack having been
allocated for the access; this helps with the fix for the first issue.
A few tests were changed to also check the stack depth computation. The
one that fails without this patch is verifier_var_off:stack_write_priv_vs_unpriv. |
| In the Linux kernel, the following vulnerability has been resolved:
uio: Fix use-after-free in uio_open
core-1 core-2
-------------------------------------------------------
uio_unregister_device uio_open
idev = idr_find()
device_unregister(&idev->dev)
put_device(&idev->dev)
uio_device_release
get_device(&idev->dev)
kfree(idev)
uio_free_minor(minor)
uio_release
put_device(&idev->dev)
kfree(idev)
-------------------------------------------------------
In the core-1 uio_unregister_device(), the device_unregister will kfree
idev when the idev->dev kobject ref is 1. But after core-1
device_unregister, put_device and before doing kfree, the core-2 may
get_device. Then:
1. After core-1 kfree idev, the core-2 will do use-after-free for idev.
2. When core-2 do uio_release and put_device, the idev will be double
freed.
To address this issue, we can get idev atomic & inc idev reference with
minor_lock. |
| In the Linux kernel, the following vulnerability has been resolved:
tipc: fix use-after-free Read in tipc_named_reinit
syzbot found the following issue on:
==================================================================
BUG: KASAN: use-after-free in tipc_named_reinit+0x94f/0x9b0
net/tipc/name_distr.c:413
Read of size 8 at addr ffff88805299a000 by task kworker/1:9/23764
CPU: 1 PID: 23764 Comm: kworker/1:9 Not tainted
5.18.0-rc4-syzkaller-00878-g17d49e6e8012 #0
Hardware name: Google Compute Engine/Google Compute Engine,
BIOS Google 01/01/2011
Workqueue: events tipc_net_finalize_work
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_address_description.constprop.0.cold+0xeb/0x495
mm/kasan/report.c:313
print_report mm/kasan/report.c:429 [inline]
kasan_report.cold+0xf4/0x1c6 mm/kasan/report.c:491
tipc_named_reinit+0x94f/0x9b0 net/tipc/name_distr.c:413
tipc_net_finalize+0x234/0x3d0 net/tipc/net.c:138
process_one_work+0x996/0x1610 kernel/workqueue.c:2289
worker_thread+0x665/0x1080 kernel/workqueue.c:2436
kthread+0x2e9/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:298
</TASK>
[...]
==================================================================
In the commit
d966ddcc3821 ("tipc: fix a deadlock when flushing scheduled work"),
the cancel_work_sync() function just to make sure ONLY the work
tipc_net_finalize_work() is executing/pending on any CPU completed before
tipc namespace is destroyed through tipc_exit_net(). But this function
is not guaranteed the work is the last queued. So, the destroyed instance
may be accessed in the work which will try to enqueue later.
In order to completely fix, we re-order the calling of cancel_work_sync()
to make sure the work tipc_net_finalize_work() was last queued and it
must be completed by calling cancel_work_sync(). |
| In the Linux kernel, the following vulnerability has been resolved:
NFC: NULL out the dev->rfkill to prevent UAF
Commit 3e3b5dfcd16a ("NFC: reorder the logic in nfc_{un,}register_device")
assumes the device_is_registered() in function nfc_dev_up() will help
to check when the rfkill is unregistered. However, this check only
take effect when device_del(&dev->dev) is done in nfc_unregister_device().
Hence, the rfkill object is still possible be dereferenced.
The crash trace in latest kernel (5.18-rc2):
[ 68.760105] ==================================================================
[ 68.760330] BUG: KASAN: use-after-free in __lock_acquire+0x3ec1/0x6750
[ 68.760756] Read of size 8 at addr ffff888009c93018 by task fuzz/313
[ 68.760756]
[ 68.760756] CPU: 0 PID: 313 Comm: fuzz Not tainted 5.18.0-rc2 #4
[ 68.760756] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 68.760756] Call Trace:
[ 68.760756] <TASK>
[ 68.760756] dump_stack_lvl+0x57/0x7d
[ 68.760756] print_report.cold+0x5e/0x5db
[ 68.760756] ? __lock_acquire+0x3ec1/0x6750
[ 68.760756] kasan_report+0xbe/0x1c0
[ 68.760756] ? __lock_acquire+0x3ec1/0x6750
[ 68.760756] __lock_acquire+0x3ec1/0x6750
[ 68.760756] ? lockdep_hardirqs_on_prepare+0x410/0x410
[ 68.760756] ? register_lock_class+0x18d0/0x18d0
[ 68.760756] lock_acquire+0x1ac/0x4f0
[ 68.760756] ? rfkill_blocked+0xe/0x60
[ 68.760756] ? lockdep_hardirqs_on_prepare+0x410/0x410
[ 68.760756] ? mutex_lock_io_nested+0x12c0/0x12c0
[ 68.760756] ? nla_get_range_signed+0x540/0x540
[ 68.760756] ? _raw_spin_lock_irqsave+0x4e/0x50
[ 68.760756] _raw_spin_lock_irqsave+0x39/0x50
[ 68.760756] ? rfkill_blocked+0xe/0x60
[ 68.760756] rfkill_blocked+0xe/0x60
[ 68.760756] nfc_dev_up+0x84/0x260
[ 68.760756] nfc_genl_dev_up+0x90/0xe0
[ 68.760756] genl_family_rcv_msg_doit+0x1f4/0x2f0
[ 68.760756] ? genl_family_rcv_msg_attrs_parse.constprop.0+0x230/0x230
[ 68.760756] ? security_capable+0x51/0x90
[ 68.760756] genl_rcv_msg+0x280/0x500
[ 68.760756] ? genl_get_cmd+0x3c0/0x3c0
[ 68.760756] ? lock_acquire+0x1ac/0x4f0
[ 68.760756] ? nfc_genl_dev_down+0xe0/0xe0
[ 68.760756] ? lockdep_hardirqs_on_prepare+0x410/0x410
[ 68.760756] netlink_rcv_skb+0x11b/0x340
[ 68.760756] ? genl_get_cmd+0x3c0/0x3c0
[ 68.760756] ? netlink_ack+0x9c0/0x9c0
[ 68.760756] ? netlink_deliver_tap+0x136/0xb00
[ 68.760756] genl_rcv+0x1f/0x30
[ 68.760756] netlink_unicast+0x430/0x710
[ 68.760756] ? memset+0x20/0x40
[ 68.760756] ? netlink_attachskb+0x740/0x740
[ 68.760756] ? __build_skb_around+0x1f4/0x2a0
[ 68.760756] netlink_sendmsg+0x75d/0xc00
[ 68.760756] ? netlink_unicast+0x710/0x710
[ 68.760756] ? netlink_unicast+0x710/0x710
[ 68.760756] sock_sendmsg+0xdf/0x110
[ 68.760756] __sys_sendto+0x19e/0x270
[ 68.760756] ? __ia32_sys_getpeername+0xa0/0xa0
[ 68.760756] ? fd_install+0x178/0x4c0
[ 68.760756] ? fd_install+0x195/0x4c0
[ 68.760756] ? kernel_fpu_begin_mask+0x1c0/0x1c0
[ 68.760756] __x64_sys_sendto+0xd8/0x1b0
[ 68.760756] ? lockdep_hardirqs_on+0xbf/0x130
[ 68.760756] ? syscall_enter_from_user_mode+0x1d/0x50
[ 68.760756] do_syscall_64+0x3b/0x90
[ 68.760756] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 68.760756] RIP: 0033:0x7f67fb50e6b3
...
[ 68.760756] RSP: 002b:00007f67fa91fe90 EFLAGS: 00000293 ORIG_RAX: 000000000000002c
[ 68.760756] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f67fb50e6b3
[ 68.760756] RDX: 000000000000001c RSI: 0000559354603090 RDI: 0000000000000003
[ 68.760756] RBP: 00007f67fa91ff00 R08: 00007f67fa91fedc R09: 000000000000000c
[ 68.760756] R10: 0000000000000000 R11: 0000000000000293 R12: 00007ffe824d496e
[ 68.760756] R13: 00007ffe824d496f R14: 00007f67fa120000 R15: 0000000000000003
[ 68.760756] </TASK>
[ 68.760756]
[ 68.760756] Allocated by task 279:
[ 68.760756] kasan_save_stack+0x1e/0x40
[
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: fix dangling sco_conn and use-after-free in sco_sock_timeout
Connecting the same socket twice consecutively in sco_sock_connect()
could lead to a race condition where two sco_conn objects are created
but only one is associated with the socket. If the socket is closed
before the SCO connection is established, the timer associated with the
dangling sco_conn object won't be canceled. As the sock object is being
freed, the use-after-free problem happens when the timer callback
function sco_sock_timeout() accesses the socket. Here's the call trace:
dump_stack+0x107/0x163
? refcount_inc+0x1c/
print_address_description.constprop.0+0x1c/0x47e
? refcount_inc+0x1c/0x7b
kasan_report+0x13a/0x173
? refcount_inc+0x1c/0x7b
check_memory_region+0x132/0x139
refcount_inc+0x1c/0x7b
sco_sock_timeout+0xb2/0x1ba
process_one_work+0x739/0xbd1
? cancel_delayed_work+0x13f/0x13f
? __raw_spin_lock_init+0xf0/0xf0
? to_kthread+0x59/0x85
worker_thread+0x593/0x70e
kthread+0x346/0x35a
? drain_workqueue+0x31a/0x31a
? kthread_bind+0x4b/0x4b
ret_from_fork+0x1f/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
macsec: fix UAF bug for real_dev
Create a new macsec device but not get reference to real_dev. That can
not ensure that real_dev is freed after macsec. That will trigger the
UAF bug for real_dev as following:
==================================================================
BUG: KASAN: use-after-free in macsec_get_iflink+0x5f/0x70 drivers/net/macsec.c:3662
Call Trace:
...
macsec_get_iflink+0x5f/0x70 drivers/net/macsec.c:3662
dev_get_iflink+0x73/0xe0 net/core/dev.c:637
default_operstate net/core/link_watch.c:42 [inline]
rfc2863_policy+0x233/0x2d0 net/core/link_watch.c:54
linkwatch_do_dev+0x2a/0x150 net/core/link_watch.c:161
Allocated by task 22209:
...
alloc_netdev_mqs+0x98/0x1100 net/core/dev.c:10549
rtnl_create_link+0x9d7/0xc00 net/core/rtnetlink.c:3235
veth_newlink+0x20e/0xa90 drivers/net/veth.c:1748
Freed by task 8:
...
kfree+0xd6/0x4d0 mm/slub.c:4552
kvfree+0x42/0x50 mm/util.c:615
device_release+0x9f/0x240 drivers/base/core.c:2229
kobject_cleanup lib/kobject.c:673 [inline]
kobject_release lib/kobject.c:704 [inline]
kref_put include/linux/kref.h:65 [inline]
kobject_put+0x1c8/0x540 lib/kobject.c:721
netdev_run_todo+0x72e/0x10b0 net/core/dev.c:10327
After commit faab39f63c1f ("net: allow out-of-order netdev unregistration")
and commit e5f80fcf869a ("ipv6: give an IPv6 dev to blackhole_netdev"), we
can add dev_hold_track() in macsec_dev_init() and dev_put_track() in
macsec_free_netdev() to fix the problem. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panfrost: Job should reference MMU not file_priv
For a while now it's been allowed for a MMU context to outlive it's
corresponding panfrost_priv, however the job structure still references
panfrost_priv to get hold of the MMU context. If panfrost_priv has been
freed this is a use-after-free which I've been able to trigger resulting
in a splat.
To fix this, drop the reference to panfrost_priv in the job structure
and add a direct reference to the MMU structure which is what's actually
needed. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/pseries: Fix use after free in remove_phb_dynamic()
In remove_phb_dynamic() we use &phb->io_resource, after we've called
device_unregister(&host_bridge->dev). But the unregister may have freed
phb, because pcibios_free_controller_deferred() is the release function
for the host_bridge.
If there are no outstanding references when we call device_unregister()
then phb will be freed out from under us.
This has gone mainly unnoticed, but with slub_debug and page_poison
enabled it can lead to a crash:
PID: 7574 TASK: c0000000d492cb80 CPU: 13 COMMAND: "drmgr"
#0 [c0000000e4f075a0] crash_kexec at c00000000027d7dc
#1 [c0000000e4f075d0] oops_end at c000000000029608
#2 [c0000000e4f07650] __bad_page_fault at c0000000000904b4
#3 [c0000000e4f076c0] do_bad_slb_fault at c00000000009a5a8
#4 [c0000000e4f076f0] data_access_slb_common_virt at c000000000008b30
Data SLB Access [380] exception frame:
R0: c000000000167250 R1: c0000000e4f07a00 R2: c000000002a46100
R3: c000000002b39ce8 R4: 00000000000000c0 R5: 00000000000000a9
R6: 3894674d000000c0 R7: 0000000000000000 R8: 00000000000000ff
R9: 0000000000000100 R10: 6b6b6b6b6b6b6b6b R11: 0000000000008000
R12: c00000000023da80 R13: c0000009ffd38b00 R14: 0000000000000000
R15: 000000011c87f0f0 R16: 0000000000000006 R17: 0000000000000003
R18: 0000000000000002 R19: 0000000000000004 R20: 0000000000000005
R21: 000000011c87ede8 R22: 000000011c87c5a8 R23: 000000011c87d3a0
R24: 0000000000000000 R25: 0000000000000001 R26: c0000000e4f07cc8
R27: c00000004d1cc400 R28: c0080000031d00e8 R29: c00000004d23d800
R30: c00000004d1d2400 R31: c00000004d1d2540
NIP: c000000000167258 MSR: 8000000000009033 OR3: c000000000e9f474
CTR: 0000000000000000 LR: c000000000167250 XER: 0000000020040003
CCR: 0000000024088420 MQ: 0000000000000000 DAR: 6b6b6b6b6b6b6ba3
DSISR: c0000000e4f07920 Syscall Result: fffffffffffffff2
[NIP : release_resource+56]
[LR : release_resource+48]
#5 [c0000000e4f07a00] release_resource at c000000000167258 (unreliable)
#6 [c0000000e4f07a30] remove_phb_dynamic at c000000000105648
#7 [c0000000e4f07ab0] dlpar_remove_slot at c0080000031a09e8 [rpadlpar_io]
#8 [c0000000e4f07b50] remove_slot_store at c0080000031a0b9c [rpadlpar_io]
#9 [c0000000e4f07be0] kobj_attr_store at c000000000817d8c
#10 [c0000000e4f07c00] sysfs_kf_write at c00000000063e504
#11 [c0000000e4f07c20] kernfs_fop_write_iter at c00000000063d868
#12 [c0000000e4f07c70] new_sync_write at c00000000054339c
#13 [c0000000e4f07d10] vfs_write at c000000000546624
#14 [c0000000e4f07d60] ksys_write at c0000000005469f4
#15 [c0000000e4f07db0] system_call_exception at c000000000030840
#16 [c0000000e4f07e10] system_call_vectored_common at c00000000000c168
To avoid it, we can take a reference to the host_bridge->dev until we're
done using phb. Then when we drop the reference the phb will be freed. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/hfi1: Fix use-after-free bug for mm struct
Under certain conditions, such as MPI_Abort, the hfi1 cleanup code may
represent the last reference held on the task mm.
hfi1_mmu_rb_unregister() then drops the last reference and the mm is freed
before the final use in hfi1_release_user_pages(). A new task may
allocate the mm structure while it is still being used, resulting in
problems. One manifestation is corruption of the mmap_sem counter leading
to a hang in down_write(). Another is corruption of an mm struct that is
in use by another task. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix sleep in atomic at close time
Matt reported a splat at msk close time:
BUG: sleeping function called from invalid context at net/mptcp/protocol.c:2877
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 155, name: packetdrill
preempt_count: 201, expected: 0
RCU nest depth: 0, expected: 0
4 locks held by packetdrill/155:
#0: ffff888001536990 (&sb->s_type->i_mutex_key#6){+.+.}-{3:3}, at: __sock_release (net/socket.c:650)
#1: ffff88800b498130 (sk_lock-AF_INET){+.+.}-{0:0}, at: mptcp_close (net/mptcp/protocol.c:2973)
#2: ffff88800b49a130 (sk_lock-AF_INET/1){+.+.}-{0:0}, at: __mptcp_close_ssk (net/mptcp/protocol.c:2363)
#3: ffff88800b49a0b0 (slock-AF_INET){+...}-{2:2}, at: __lock_sock_fast (include/net/sock.h:1820)
Preemption disabled at:
0x0
CPU: 1 PID: 155 Comm: packetdrill Not tainted 6.1.0-rc5 #365
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:107 (discriminator 4))
__might_resched.cold (kernel/sched/core.c:9891)
__mptcp_destroy_sock (include/linux/kernel.h:110)
__mptcp_close (net/mptcp/protocol.c:2959)
mptcp_subflow_queue_clean (include/net/sock.h:1777)
__mptcp_close_ssk (net/mptcp/protocol.c:2363)
mptcp_destroy_common (net/mptcp/protocol.c:3170)
mptcp_destroy (include/net/sock.h:1495)
__mptcp_destroy_sock (net/mptcp/protocol.c:2886)
__mptcp_close (net/mptcp/protocol.c:2959)
mptcp_close (net/mptcp/protocol.c:2974)
inet_release (net/ipv4/af_inet.c:432)
__sock_release (net/socket.c:651)
sock_close (net/socket.c:1367)
__fput (fs/file_table.c:320)
task_work_run (kernel/task_work.c:181 (discriminator 1))
exit_to_user_mode_prepare (include/linux/resume_user_mode.h:49)
syscall_exit_to_user_mode (kernel/entry/common.c:130)
do_syscall_64 (arch/x86/entry/common.c:87)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
We can't call mptcp_close under the 'fast' socket lock variant, replace
it with a sock_lock_nested() as the relevant code is already under the
listening msk socket lock protection. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: ops: Fix bounds check for _sx controls
For _sx controls the semantics of the max field is not the usual one, max
is the number of steps rather than the maximum value. This means that our
check in snd_soc_put_volsw_sx() needs to just check against the maximum
value. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/gup: fix gup_pud_range() for dax
For dax pud, pud_huge() returns true on x86. So the function works as long
as hugetlb is configured. However, dax doesn't depend on hugetlb.
Commit 414fd080d125 ("mm/gup: fix gup_pmd_range() for dax") fixed
devmap-backed huge PMDs, but missed devmap-backed huge PUDs. Fix this as
well.
This fixes the below kernel panic:
general protection fault, probably for non-canonical address 0x69e7c000cc478: 0000 [#1] SMP
< snip >
Call Trace:
<TASK>
get_user_pages_fast+0x1f/0x40
iov_iter_get_pages+0xc6/0x3b0
? mempool_alloc+0x5d/0x170
bio_iov_iter_get_pages+0x82/0x4e0
? bvec_alloc+0x91/0xc0
? bio_alloc_bioset+0x19a/0x2a0
blkdev_direct_IO+0x282/0x480
? __io_complete_rw_common+0xc0/0xc0
? filemap_range_has_page+0x82/0xc0
generic_file_direct_write+0x9d/0x1a0
? inode_update_time+0x24/0x30
__generic_file_write_iter+0xbd/0x1e0
blkdev_write_iter+0xb4/0x150
? io_import_iovec+0x8d/0x340
io_write+0xf9/0x300
io_issue_sqe+0x3c3/0x1d30
? sysvec_reschedule_ipi+0x6c/0x80
__io_queue_sqe+0x33/0x240
? fget+0x76/0xa0
io_submit_sqes+0xe6a/0x18d0
? __fget_light+0xd1/0x100
__x64_sys_io_uring_enter+0x199/0x880
? __context_tracking_enter+0x1f/0x70
? irqentry_exit_to_user_mode+0x24/0x30
? irqentry_exit+0x1d/0x30
? __context_tracking_exit+0xe/0x70
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x61/0xcb
RIP: 0033:0x7fc97c11a7be
< snip >
</TASK>
---[ end trace 48b2e0e67debcaeb ]---
RIP: 0010:internal_get_user_pages_fast+0x340/0x990
< snip >
Kernel panic - not syncing: Fatal exception
Kernel Offset: disabled |
| In the Linux kernel, the following vulnerability has been resolved:
can: af_can: fix NULL pointer dereference in can_rcv_filter
Analogue to commit 8aa59e355949 ("can: af_can: fix NULL pointer
dereference in can_rx_register()") we need to check for a missing
initialization of ml_priv in the receive path of CAN frames.
Since commit 4e096a18867a ("net: introduce CAN specific pointer in the
struct net_device") the check for dev->type to be ARPHRD_CAN is not
sufficient anymore since bonding or tun netdevices claim to be CAN
devices but do not initialize ml_priv accordingly. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: flowtable_offload: fix using __this_cpu_add in preemptible
flow_offload_queue_work() can be called in workqueue without
bh disabled, like the call trace showed in my act_ct testing,
calling NF_FLOW_TABLE_STAT_INC() there would cause a call
trace:
BUG: using __this_cpu_add() in preemptible [00000000] code: kworker/u4:0/138560
caller is flow_offload_queue_work+0xec/0x1b0 [nf_flow_table]
Workqueue: act_ct_workqueue tcf_ct_flow_table_cleanup_work [act_ct]
Call Trace:
<TASK>
dump_stack_lvl+0x33/0x46
check_preemption_disabled+0xc3/0xf0
flow_offload_queue_work+0xec/0x1b0 [nf_flow_table]
nf_flow_table_iterate+0x138/0x170 [nf_flow_table]
nf_flow_table_free+0x140/0x1a0 [nf_flow_table]
tcf_ct_flow_table_cleanup_work+0x2f/0x2b0 [act_ct]
process_one_work+0x6a3/0x1030
worker_thread+0x8a/0xdf0
This patch fixes it by using NF_FLOW_TABLE_STAT_INC_ATOMIC()
instead in flow_offload_queue_work().
Note that for FLOW_CLS_REPLACE branch in flow_offload_queue_work(),
it may not be called in preemptible path, but it's good to use
NF_FLOW_TABLE_STAT_INC_ATOMIC() for all cases in
flow_offload_queue_work(). |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: mt7621: Add sentinel to quirks table
Current driver is missing a sentinel in the struct soc_device_attribute
array, which causes an oops when assessed by the
soc_device_match(mt7621_pcie_quirks_match) call.
This was only exposed once the CONFIG_SOC_MT7621 mt7621 soc_dev_attr
was fixed to register the SOC as a device, in:
commit 7c18b64bba3b ("mips: ralink: mt7621: do not use kzalloc too early")
Fix it by adding the required sentinel. |
| In the Linux kernel, the following vulnerability has been resolved:
sched: Fix yet more sched_fork() races
Where commit 4ef0c5c6b5ba ("kernel/sched: Fix sched_fork() access an
invalid sched_task_group") fixed a fork race vs cgroup, it opened up a
race vs syscalls by not placing the task on the runqueue before it
gets exposed through the pidhash.
Commit 13765de8148f ("sched/fair: Fix fault in reweight_entity") is
trying to fix a single instance of this, instead fix the whole class
of issues, effectively reverting this commit. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/fair: Fix fault in reweight_entity
Syzbot found a GPF in reweight_entity. This has been bisected to
commit 4ef0c5c6b5ba ("kernel/sched: Fix sched_fork() access an invalid
sched_task_group")
There is a race between sched_post_fork() and setpriority(PRIO_PGRP)
within a thread group that causes a null-ptr-deref in
reweight_entity() in CFS. The scenario is that the main process spawns
number of new threads, which then call setpriority(PRIO_PGRP, 0, -20),
wait, and exit. For each of the new threads the copy_process() gets
invoked, which adds the new task_struct and calls sched_post_fork()
for it.
In the above scenario there is a possibility that
setpriority(PRIO_PGRP) and set_one_prio() will be called for a thread
in the group that is just being created by copy_process(), and for
which the sched_post_fork() has not been executed yet. This will
trigger a null pointer dereference in reweight_entity(), as it will
try to access the run queue pointer, which hasn't been set.
Before the mentioned change the cfs_rq pointer for the task has been
set in sched_fork(), which is called much earlier in copy_process(),
before the new task is added to the thread_group. Now it is done in
the sched_post_fork(), which is called after that. To fix the issue
the remove the update_load param from the update_load param() function
and call reweight_task() only if the task flag doesn't have the
TASK_NEW flag set. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Fix double list_add when enabling VMD in scalable mode
When enabling VMD and IOMMU scalable mode, the following kernel panic
call trace/kernel log is shown in Eagle Stream platform (Sapphire Rapids
CPU) during booting:
pci 0000:59:00.5: Adding to iommu group 42
...
vmd 0000:59:00.5: PCI host bridge to bus 10000:80
pci 10000:80:01.0: [8086:352a] type 01 class 0x060400
pci 10000:80:01.0: reg 0x10: [mem 0x00000000-0x0001ffff 64bit]
pci 10000:80:01.0: enabling Extended Tags
pci 10000:80:01.0: PME# supported from D0 D3hot D3cold
pci 10000:80:01.0: DMAR: Setup RID2PASID failed
pci 10000:80:01.0: Failed to add to iommu group 42: -16
pci 10000:80:03.0: [8086:352b] type 01 class 0x060400
pci 10000:80:03.0: reg 0x10: [mem 0x00000000-0x0001ffff 64bit]
pci 10000:80:03.0: enabling Extended Tags
pci 10000:80:03.0: PME# supported from D0 D3hot D3cold
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:29!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 0 PID: 7 Comm: kworker/0:1 Not tainted 5.17.0-rc3+ #7
Hardware name: Lenovo ThinkSystem SR650V3/SB27A86647, BIOS ESE101Y-1.00 01/13/2022
Workqueue: events work_for_cpu_fn
RIP: 0010:__list_add_valid.cold+0x26/0x3f
Code: 9a 4a ab ff 4c 89 c1 48 c7 c7 40 0c d9 9e e8 b9 b1 fe ff 0f
0b 48 89 f2 4c 89 c1 48 89 fe 48 c7 c7 f0 0c d9 9e e8 a2 b1
fe ff <0f> 0b 48 89 d1 4c 89 c6 4c 89 ca 48 c7 c7 98 0c d9
9e e8 8b b1 fe
RSP: 0000:ff5ad434865b3a40 EFLAGS: 00010246
RAX: 0000000000000058 RBX: ff4d61160b74b880 RCX: ff4d61255e1fffa8
RDX: 0000000000000000 RSI: 00000000fffeffff RDI: ffffffff9fd34f20
RBP: ff4d611d8e245c00 R08: 0000000000000000 R09: ff5ad434865b3888
R10: ff5ad434865b3880 R11: ff4d61257fdc6fe8 R12: ff4d61160b74b8a0
R13: ff4d61160b74b8a0 R14: ff4d611d8e245c10 R15: ff4d611d8001ba70
FS: 0000000000000000(0000) GS:ff4d611d5ea00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ff4d611fa1401000 CR3: 0000000aa0210001 CR4: 0000000000771ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
intel_pasid_alloc_table+0x9c/0x1d0
dmar_insert_one_dev_info+0x423/0x540
? device_to_iommu+0x12d/0x2f0
intel_iommu_attach_device+0x116/0x290
__iommu_attach_device+0x1a/0x90
iommu_group_add_device+0x190/0x2c0
__iommu_probe_device+0x13e/0x250
iommu_probe_device+0x24/0x150
iommu_bus_notifier+0x69/0x90
blocking_notifier_call_chain+0x5a/0x80
device_add+0x3db/0x7b0
? arch_memremap_can_ram_remap+0x19/0x50
? memremap+0x75/0x140
pci_device_add+0x193/0x1d0
pci_scan_single_device+0xb9/0xf0
pci_scan_slot+0x4c/0x110
pci_scan_child_bus_extend+0x3a/0x290
vmd_enable_domain.constprop.0+0x63e/0x820
vmd_probe+0x163/0x190
local_pci_probe+0x42/0x80
work_for_cpu_fn+0x13/0x20
process_one_work+0x1e2/0x3b0
worker_thread+0x1c4/0x3a0
? rescuer_thread+0x370/0x370
kthread+0xc7/0xf0
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30
</TASK>
Modules linked in:
---[ end trace 0000000000000000 ]---
...
Kernel panic - not syncing: Fatal exception
Kernel Offset: 0x1ca00000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff)
---[ end Kernel panic - not syncing: Fatal exception ]---
The following 'lspci' output shows devices '10000:80:*' are subdevices of
the VMD device 0000:59:00.5:
$ lspci
...
0000:59:00.5 RAID bus controller: Intel Corporation Volume Management Device NVMe RAID Controller (rev 20)
...
10000:80:01.0 PCI bridge: Intel Corporation Device 352a (rev 03)
10000:80:03.0 PCI bridge: Intel Corporation Device 352b (rev 03)
10000:80:05.0 PCI bridge: Intel Corporation Device 352c (rev 03)
10000:80:07.0 PCI bridge: Intel Corporation Device 352d (rev 03)
10000:81:00.0 Non-Volatile memory controller: Intel Corporation NVMe Datacenter SSD [3DNAND, Beta Rock Controller]
10000:82:00
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: Correctly set DATA_FIN timeout when number of retransmits is large
Syzkaller with UBSAN uncovered a scenario where a large number of
DATA_FIN retransmits caused a shift-out-of-bounds in the DATA_FIN
timeout calculation:
================================================================================
UBSAN: shift-out-of-bounds in net/mptcp/protocol.c:470:29
shift exponent 32 is too large for 32-bit type 'unsigned int'
CPU: 1 PID: 13059 Comm: kworker/1:0 Not tainted 5.17.0-rc2-00630-g5fbf21c90c60 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Workqueue: events mptcp_worker
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
ubsan_epilogue+0xb/0x5a lib/ubsan.c:151
__ubsan_handle_shift_out_of_bounds.cold+0xb2/0x20e lib/ubsan.c:330
mptcp_set_datafin_timeout net/mptcp/protocol.c:470 [inline]
__mptcp_retrans.cold+0x72/0x77 net/mptcp/protocol.c:2445
mptcp_worker+0x58a/0xa70 net/mptcp/protocol.c:2528
process_one_work+0x9df/0x16d0 kernel/workqueue.c:2307
worker_thread+0x95/0xe10 kernel/workqueue.c:2454
kthread+0x2f4/0x3b0 kernel/kthread.c:377
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295
</TASK>
================================================================================
This change limits the maximum timeout by limiting the size of the
shift, which keeps all intermediate values in-bounds. |
| In the Linux kernel, the following vulnerability has been resolved:
efi: fix NULL-deref in init error path
In cases where runtime services are not supported or have been disabled,
the runtime services workqueue will never have been allocated.
Do not try to destroy the workqueue unconditionally in the unlikely
event that EFI initialisation fails to avoid dereferencing a NULL
pointer. |