Search

Search Results (318578 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-13033 1 Redhat 3 Acm, Ceph Storage, Rhdh 2025-11-14 7.5 High
A vulnerability was identified in the email parsing library due to improper handling of specially formatted recipient email addresses. An attacker can exploit this flaw by crafting a recipient address that embeds an external address within quotes. This causes the application to misdirect the email to the attacker's external address instead of the intended internal recipient. This could lead to a significant data leak of sensitive information and allow an attacker to bypass security filters and access controls.
CVE-2025-12922 1 Openclinica 1 Openclinica 2025-11-14 6.3 Medium
A vulnerability was found in OpenClinica Community Edition up to 3.12.2/3.13. This affects an unknown part of the file /ImportCRFData?action=confirm of the component CRF Data Import. Performing manipulation of the argument xml_file results in path traversal. The attack can be initiated remotely. The exploit has been made public and could be used. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2016-7420 1 Cryptopp 1 Crypto\+\+ 2025-11-14 N/A
Crypto++ (aka cryptopp) through 5.6.4 does not document the requirement for a compile-time NDEBUG definition disabling the many assert calls that are unintended in production use, which might allow context-dependent attackers to obtain sensitive information by leveraging access to process memory after an assertion failure, as demonstrated by reading a core dump.
CVE-2025-10278 2 Iocoder, Ruoyi 3 Ruoyi-vue-pro, Ruoyi, Ruoyi-vue 2025-11-14 6.3 Medium
A flaw has been found in YunaiV ruoyi-vue-pro up to 2025.09. Impacted is an unknown function of the file /crm/contact/transfer. This manipulation of the argument ids/newOwnerUserId causes improper authorization. The attack is possible to be carried out remotely. The exploit has been published and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2025-54168 1 Qnap 1 Qulog Center 2025-11-14 4.8 Medium
A cross-site scripting (XSS) vulnerability has been reported to affect QuLog Center. If a remote attacker gains an administrator account, they can then exploit the vulnerability to bypass security mechanisms or read application data. We have already fixed the vulnerability in the following version: QuLog Center 1.8.2.923 ( 2025/08/27 ) and later
CVE-2025-52425 1 Qnap 1 Qumagie 2025-11-14 9.8 Critical
An SQL injection vulnerability has been reported to affect QuMagie. A remote attacker can exploit the vulnerability to execute unauthorized code or commands. We have already fixed the vulnerability in the following versions: QuMagie 2.7.0 and later
CVE-2025-58464 1 Qnap 1 Qumagie 2025-11-14 7.5 High
A relative path traversal vulnerability has been reported to affect QuMagie. If a remote attacker, they can then exploit the vulnerability to read the contents of unexpected files or system data. We have already fixed the vulnerability in the following version: QuMagie 2.7.3 and later
CVE-2025-57712 1 Qnap 1 Qsync Central 2025-11-14 6.5 Medium
A path traversal vulnerability has been reported to affect Qsync Central. If a remote attacker gains a user account, they can then exploit the vulnerability to read the contents of unexpected files or system data. We have already fixed the vulnerability in the following version: Qsync Central 5.0.0.3 ( 2025/08/28 ) and later
CVE-2025-57706 1 Qnap 1 File Station 2025-11-14 5.4 Medium
A cross-site scripting (XSS) vulnerability has been reported to affect File Station 5. If a remote attacker gains a user account, they can then exploit the vulnerability to bypass security mechanisms or read application data. We have already fixed the vulnerability in the following version: File Station 5 5.5.6.5018 and later
CVE-2025-53413 1 Qnap 1 File Station 2025-11-14 6.5 Medium
An allocation of resources without limits or throttling vulnerability has been reported to affect File Station 5. If a remote attacker gains a user account, they can then exploit the vulnerability to prevent other systems, applications, or processes from accessing the same type of resource. We have already fixed the vulnerability in the following version: File Station 5 5.5.6.5018 and later
CVE-2025-53412 1 Qnap 1 File Station 2025-11-14 6.5 Medium
A NULL pointer dereference vulnerability has been reported to affect File Station 5. If a remote attacker gains a user account, they can then exploit the vulnerability to launch a denial-of-service (DoS) attack. We have already fixed the vulnerability in the following version: File Station 5 5.5.6.5018 and later
CVE-2025-53411 1 Qnap 1 File Station 2025-11-14 4.9 Medium
An allocation of resources without limits or throttling vulnerability has been reported to affect File Station 5. If a remote attacker gains an administrator account, they can then exploit the vulnerability to prevent other systems, applications, or processes from accessing the same type of resource. We have already fixed the vulnerability in the following version: File Station 5 5.5.6.5018 and later
CVE-2025-53410 1 Qnap 1 File Station 2025-11-14 6.5 Medium
An allocation of resources without limits or throttling vulnerability has been reported to affect File Station 5. If a remote attacker gains a user account, they can then exploit the vulnerability to prevent other systems, applications, or processes from accessing the same type of resource. We have already fixed the vulnerability in the following version: File Station 5 5.5.6.5018 and later
CVE-2025-53409 1 Qnap 1 File Station 2025-11-14 6.5 Medium
An allocation of resources without limits or throttling vulnerability has been reported to affect File Station 5. If a remote attacker gains a user account, they can then exploit the vulnerability to prevent other systems, applications, or processes from accessing the same type of resource. We have already fixed the vulnerability in the following version: File Station 5 5.5.6.5018 and later
CVE-2025-37837 1 Linux 1 Linux Kernel 2025-11-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommu/tegra241-cmdqv: Fix warnings due to dmam_free_coherent() Two WARNINGs are observed when SMMU driver rolls back upon failure: arm-smmu-v3.9.auto: Failed to register iommu arm-smmu-v3.9.auto: probe with driver arm-smmu-v3 failed with error -22 ------------[ cut here ]------------ WARNING: CPU: 5 PID: 1 at kernel/dma/mapping.c:74 dmam_free_coherent+0xc0/0xd8 Call trace: dmam_free_coherent+0xc0/0xd8 (P) tegra241_vintf_free_lvcmdq+0x74/0x188 tegra241_cmdqv_remove_vintf+0x60/0x148 tegra241_cmdqv_remove+0x48/0xc8 arm_smmu_impl_remove+0x28/0x60 devm_action_release+0x1c/0x40 ------------[ cut here ]------------ 128 pages are still in use! WARNING: CPU: 16 PID: 1 at mm/page_alloc.c:6902 free_contig_range+0x18c/0x1c8 Call trace: free_contig_range+0x18c/0x1c8 (P) cma_release+0x154/0x2f0 dma_free_contiguous+0x38/0xa0 dma_direct_free+0x10c/0x248 dma_free_attrs+0x100/0x290 dmam_free_coherent+0x78/0xd8 tegra241_vintf_free_lvcmdq+0x74/0x160 tegra241_cmdqv_remove+0x98/0x198 arm_smmu_impl_remove+0x28/0x60 devm_action_release+0x1c/0x40 This is because the LVCMDQ queue memory are managed by devres, while that dmam_free_coherent() is called in the context of devm_action_release(). Jason pointed out that "arm_smmu_impl_probe() has mis-ordered the devres callbacks if ops->device_remove() is going to be manually freeing things that probe allocated": https://lore.kernel.org/linux-iommu/20250407174408.GB1722458@nvidia.com/ In fact, tegra241_cmdqv_init_structures() only allocates memory resources which means any failure that it generates would be similar to -ENOMEM, so there is no point in having that "falling back to standard SMMU" routine, as the standard SMMU would likely fail to allocate memory too. Remove the unwind part in tegra241_cmdqv_init_structures(), and return a proper error code to ask SMMU driver to call tegra241_cmdqv_remove() via impl_ops->device_remove(). Then, drop tegra241_vintf_free_lvcmdq() since devres will take care of that.
CVE-2025-37839 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-11-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: jbd2: remove wrong sb->s_sequence check Journal emptiness is not determined by sb->s_sequence == 0 but rather by sb->s_start == 0 (which is set a few lines above). Furthermore 0 is a valid transaction ID so the check can spuriously trigger. Remove the invalid WARN_ON.
CVE-2025-37836 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-11-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI: Fix reference leak in pci_register_host_bridge() If device_register() fails, call put_device() to give up the reference to avoid a memory leak, per the comment at device_register(). Found by code review. [bhelgaas: squash Dan Carpenter's double free fix from https://lore.kernel.org/r/db806a6c-a91b-4e5a-a84b-6b7e01bdac85@stanley.mountain]
CVE-2022-49948 1 Linux 1 Linux Kernel 2025-11-14 7.1 High
In the Linux kernel, the following vulnerability has been resolved: vt: Clear selection before changing the font When changing the console font with ioctl(KDFONTOP) the new font size can be bigger than the previous font. A previous selection may thus now be outside of the new screen size and thus trigger out-of-bounds accesses to graphics memory if the selection is removed in vc_do_resize(). Prevent such out-of-memory accesses by dropping the selection before the various con_font_set() console handlers are called.
CVE-2022-49947 1 Linux 1 Linux Kernel 2025-11-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: binder: fix alloc->vma_vm_mm null-ptr dereference Syzbot reported a couple issues introduced by commit 44e602b4e52f ("binder_alloc: add missing mmap_lock calls when using the VMA"), in which we attempt to acquire the mmap_lock when alloc->vma_vm_mm has not been initialized yet. This can happen if a binder_proc receives a transaction without having previously called mmap() to setup the binder_proc->alloc space in [1]. Also, a similar issue occurs via binder_alloc_print_pages() when we try to dump the debugfs binder stats file in [2]. Sample of syzbot's crash report: ================================================================== KASAN: null-ptr-deref in range [0x0000000000000128-0x000000000000012f] CPU: 0 PID: 3755 Comm: syz-executor229 Not tainted 6.0.0-rc1-next-20220819-syzkaller #0 syz-executor229[3755] cmdline: ./syz-executor2294415195 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/22/2022 RIP: 0010:__lock_acquire+0xd83/0x56d0 kernel/locking/lockdep.c:4923 [...] Call Trace: <TASK> lock_acquire kernel/locking/lockdep.c:5666 [inline] lock_acquire+0x1ab/0x570 kernel/locking/lockdep.c:5631 down_read+0x98/0x450 kernel/locking/rwsem.c:1499 mmap_read_lock include/linux/mmap_lock.h:117 [inline] binder_alloc_new_buf_locked drivers/android/binder_alloc.c:405 [inline] binder_alloc_new_buf+0xa5/0x19e0 drivers/android/binder_alloc.c:593 binder_transaction+0x242e/0x9a80 drivers/android/binder.c:3199 binder_thread_write+0x664/0x3220 drivers/android/binder.c:3986 binder_ioctl_write_read drivers/android/binder.c:5036 [inline] binder_ioctl+0x3470/0x6d00 drivers/android/binder.c:5323 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl fs/ioctl.c:856 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:856 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd [...] ================================================================== Fix these issues by setting up alloc->vma_vm_mm pointer during open() and caching directly from current->mm. This guarantees we have a valid reference to take the mmap_lock during scenarios described above. [1] https://syzkaller.appspot.com/bug?extid=f7dc54e5be28950ac459 [2] https://syzkaller.appspot.com/bug?extid=a75ebe0452711c9e56d9
CVE-2025-37834 1 Linux 1 Linux Kernel 2025-11-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/vmscan: don't try to reclaim hwpoison folio Syzkaller reports a bug as follows: Injecting memory failure for pfn 0x18b00e at process virtual address 0x20ffd000 Memory failure: 0x18b00e: dirty swapcache page still referenced by 2 users Memory failure: 0x18b00e: recovery action for dirty swapcache page: Failed page: refcount:2 mapcount:0 mapping:0000000000000000 index:0x20ffd pfn:0x18b00e memcg:ffff0000dd6d9000 anon flags: 0x5ffffe00482011(locked|dirty|arch_1|swapbacked|hwpoison|node=0|zone=2|lastcpupid=0xfffff) raw: 005ffffe00482011 dead000000000100 dead000000000122 ffff0000e232a7c9 raw: 0000000000020ffd 0000000000000000 00000002ffffffff ffff0000dd6d9000 page dumped because: VM_BUG_ON_FOLIO(!folio_test_uptodate(folio)) ------------[ cut here ]------------ kernel BUG at mm/swap_state.c:184! Internal error: Oops - BUG: 00000000f2000800 [#1] SMP Modules linked in: CPU: 0 PID: 60 Comm: kswapd0 Not tainted 6.6.0-gcb097e7de84e #3 Hardware name: linux,dummy-virt (DT) pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : add_to_swap+0xbc/0x158 lr : add_to_swap+0xbc/0x158 sp : ffff800087f37340 x29: ffff800087f37340 x28: fffffc00052c0380 x27: ffff800087f37780 x26: ffff800087f37490 x25: ffff800087f37c78 x24: ffff800087f377a0 x23: ffff800087f37c50 x22: 0000000000000000 x21: fffffc00052c03b4 x20: 0000000000000000 x19: fffffc00052c0380 x18: 0000000000000000 x17: 296f696c6f662865 x16: 7461646f7470755f x15: 747365745f6f696c x14: 6f6621284f494c4f x13: 0000000000000001 x12: ffff600036d8b97b x11: 1fffe00036d8b97a x10: ffff600036d8b97a x9 : dfff800000000000 x8 : 00009fffc9274686 x7 : ffff0001b6c5cbd3 x6 : 0000000000000001 x5 : ffff0000c25896c0 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000000000 x1 : ffff0000c25896c0 x0 : 0000000000000000 Call trace: add_to_swap+0xbc/0x158 shrink_folio_list+0x12ac/0x2648 shrink_inactive_list+0x318/0x948 shrink_lruvec+0x450/0x720 shrink_node_memcgs+0x280/0x4a8 shrink_node+0x128/0x978 balance_pgdat+0x4f0/0xb20 kswapd+0x228/0x438 kthread+0x214/0x230 ret_from_fork+0x10/0x20 I can reproduce this issue with the following steps: 1) When a dirty swapcache page is isolated by reclaim process and the page isn't locked, inject memory failure for the page. me_swapcache_dirty() clears uptodate flag and tries to delete from lru, but fails. Reclaim process will put the hwpoisoned page back to lru. 2) The process that maps the hwpoisoned page exits, the page is deleted the page will never be freed and will be in the lru forever. 3) If we trigger a reclaim again and tries to reclaim the page, add_to_swap() will trigger VM_BUG_ON_FOLIO due to the uptodate flag is cleared. To fix it, skip the hwpoisoned page in shrink_folio_list(). Besides, the hwpoison folio may not be unmapped by hwpoison_user_mappings() yet, unmap it in shrink_folio_list(), otherwise the folio will fail to be unmaped by hwpoison_user_mappings() since the folio isn't in lru list.