CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
media: edia: dvbdev: fix a use-after-free
In dvb_register_device, *pdvbdev is set equal to dvbdev, which is freed
in several error-handling paths. However, *pdvbdev is not set to NULL
after dvbdev's deallocation, causing use-after-frees in many places,
for example, in the following call chain:
budget_register
|-> dvb_dmxdev_init
|-> dvb_register_device
|-> dvb_dmxdev_release
|-> dvb_unregister_device
|-> dvb_remove_device
|-> dvb_device_put
|-> kref_put
When calling dvb_unregister_device, dmxdev->dvbdev (i.e. *pdvbdev in
dvb_register_device) could point to memory that had been freed in
dvb_register_device. Thereafter, this pointer is transferred to
kref_put and triggering a use-after-free. |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_ncm: Fix UAF ncm object at re-bind after usb ep transport error
When ncm function is working and then stop usb0 interface for link down,
eth_stop() is called. At this piont, accidentally if usb transport error
should happen in usb_ep_enable(), 'in_ep' and/or 'out_ep' may not be enabled.
After that, ncm_disable() is called to disable for ncm unbind
but gether_disconnect() is never called since 'in_ep' is not enabled.
As the result, ncm object is released in ncm unbind
but 'dev->port_usb' associated to 'ncm->port' is not NULL.
And when ncm bind again to recover netdev, ncm object is reallocated
but usb0 interface is already associated to previous released ncm object.
Therefore, once usb0 interface is up and eth_start_xmit() is called,
released ncm object is dereferrenced and it might cause use-after-free memory.
[function unlink via configfs]
usb0: eth_stop dev->port_usb=ffffff9b179c3200
--> error happens in usb_ep_enable().
NCM: ncm_disable: ncm=ffffff9b179c3200
--> no gether_disconnect() since ncm->port.in_ep->enabled is false.
NCM: ncm_unbind: ncm unbind ncm=ffffff9b179c3200
NCM: ncm_free: ncm free ncm=ffffff9b179c3200 <-- released ncm
[function link via configfs]
NCM: ncm_alloc: ncm alloc ncm=ffffff9ac4f8a000
NCM: ncm_bind: ncm bind ncm=ffffff9ac4f8a000
NCM: ncm_set_alt: ncm=ffffff9ac4f8a000 alt=0
usb0: eth_open dev->port_usb=ffffff9b179c3200 <-- previous released ncm
usb0: eth_start dev->port_usb=ffffff9b179c3200 <--
eth_start_xmit()
--> dev->wrap()
Unable to handle kernel paging request at virtual address dead00000000014f
This patch addresses the issue by checking if 'ncm->netdev' is not NULL at
ncm_disable() to call gether_disconnect() to deassociate 'dev->port_usb'.
It's more reasonable to check 'ncm->netdev' to call gether_connect/disconnect
rather than check 'ncm->port.in_ep->enabled' since it might not be enabled
but the gether connection might be established. |
In the Linux kernel, the following vulnerability has been resolved:
bootconfig: use memblock_free_late to free xbc memory to buddy
On the time to free xbc memory in xbc_exit(), memblock may has handed
over memory to buddy allocator. So it doesn't make sense to free memory
back to memblock. memblock_free() called by xbc_exit() even causes UAF bugs
on architectures with CONFIG_ARCH_KEEP_MEMBLOCK disabled like x86.
Following KASAN logs shows this case.
This patch fixes the xbc memory free problem by calling memblock_free()
in early xbc init error rewind path and calling memblock_free_late() in
xbc exit path to free memory to buddy allocator.
[ 9.410890] ==================================================================
[ 9.418962] BUG: KASAN: use-after-free in memblock_isolate_range+0x12d/0x260
[ 9.426850] Read of size 8 at addr ffff88845dd30000 by task swapper/0/1
[ 9.435901] CPU: 9 PID: 1 Comm: swapper/0 Tainted: G U 6.9.0-rc3-00208-g586b5dfb51b9 #5
[ 9.446403] Hardware name: Intel Corporation RPLP LP5 (CPU:RaptorLake)/RPLP LP5 (ID:13), BIOS IRPPN02.01.01.00.00.19.015.D-00000000 Dec 28 2023
[ 9.460789] Call Trace:
[ 9.463518] <TASK>
[ 9.465859] dump_stack_lvl+0x53/0x70
[ 9.469949] print_report+0xce/0x610
[ 9.473944] ? __virt_addr_valid+0xf5/0x1b0
[ 9.478619] ? memblock_isolate_range+0x12d/0x260
[ 9.483877] kasan_report+0xc6/0x100
[ 9.487870] ? memblock_isolate_range+0x12d/0x260
[ 9.493125] memblock_isolate_range+0x12d/0x260
[ 9.498187] memblock_phys_free+0xb4/0x160
[ 9.502762] ? __pfx_memblock_phys_free+0x10/0x10
[ 9.508021] ? mutex_unlock+0x7e/0xd0
[ 9.512111] ? __pfx_mutex_unlock+0x10/0x10
[ 9.516786] ? kernel_init_freeable+0x2d4/0x430
[ 9.521850] ? __pfx_kernel_init+0x10/0x10
[ 9.526426] xbc_exit+0x17/0x70
[ 9.529935] kernel_init+0x38/0x1e0
[ 9.533829] ? _raw_spin_unlock_irq+0xd/0x30
[ 9.538601] ret_from_fork+0x2c/0x50
[ 9.542596] ? __pfx_kernel_init+0x10/0x10
[ 9.547170] ret_from_fork_asm+0x1a/0x30
[ 9.551552] </TASK>
[ 9.555649] The buggy address belongs to the physical page:
[ 9.561875] page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x1 pfn:0x45dd30
[ 9.570821] flags: 0x200000000000000(node=0|zone=2)
[ 9.576271] page_type: 0xffffffff()
[ 9.580167] raw: 0200000000000000 ffffea0011774c48 ffffea0012ba1848 0000000000000000
[ 9.588823] raw: 0000000000000001 0000000000000000 00000000ffffffff 0000000000000000
[ 9.597476] page dumped because: kasan: bad access detected
[ 9.605362] Memory state around the buggy address:
[ 9.610714] ffff88845dd2ff00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 9.618786] ffff88845dd2ff80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 9.626857] >ffff88845dd30000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
[ 9.634930] ^
[ 9.638534] ffff88845dd30080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
[ 9.646605] ffff88845dd30100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
[ 9.654675] ================================================================== |
In the Linux kernel, the following vulnerability has been resolved:
crypto: qat - resolve race condition during AER recovery
During the PCI AER system's error recovery process, the kernel driver
may encounter a race condition with freeing the reset_data structure's
memory. If the device restart will take more than 10 seconds the function
scheduling that restart will exit due to a timeout, and the reset_data
structure will be freed. However, this data structure is used for
completion notification after the restart is completed, which leads
to a UAF bug.
This results in a KFENCE bug notice.
BUG: KFENCE: use-after-free read in adf_device_reset_worker+0x38/0xa0 [intel_qat]
Use-after-free read at 0x00000000bc56fddf (in kfence-#142):
adf_device_reset_worker+0x38/0xa0 [intel_qat]
process_one_work+0x173/0x340
To resolve this race condition, the memory associated to the container
of the work_struct is freed on the worker if the timeout expired,
otherwise on the function that schedules the worker.
The timeout detection can be done by checking if the caller is
still waiting for completion or not by using completion_done() function. |
In the Linux kernel, the following vulnerability has been resolved:
mac802154: fix llsec key resources release in mac802154_llsec_key_del
mac802154_llsec_key_del() can free resources of a key directly without
following the RCU rules for waiting before the end of a grace period. This
may lead to use-after-free in case llsec_lookup_key() is traversing the
list of keys in parallel with a key deletion:
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 4 PID: 16000 at lib/refcount.c:25 refcount_warn_saturate+0x162/0x2a0
Modules linked in:
CPU: 4 PID: 16000 Comm: wpan-ping Not tainted 6.7.0 #19
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
RIP: 0010:refcount_warn_saturate+0x162/0x2a0
Call Trace:
<TASK>
llsec_lookup_key.isra.0+0x890/0x9e0
mac802154_llsec_encrypt+0x30c/0x9c0
ieee802154_subif_start_xmit+0x24/0x1e0
dev_hard_start_xmit+0x13e/0x690
sch_direct_xmit+0x2ae/0xbc0
__dev_queue_xmit+0x11dd/0x3c20
dgram_sendmsg+0x90b/0xd60
__sys_sendto+0x466/0x4c0
__x64_sys_sendto+0xe0/0x1c0
do_syscall_64+0x45/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
Also, ieee802154_llsec_key_entry structures are not freed by
mac802154_llsec_key_del():
unreferenced object 0xffff8880613b6980 (size 64):
comm "iwpan", pid 2176, jiffies 4294761134 (age 60.475s)
hex dump (first 32 bytes):
78 0d 8f 18 80 88 ff ff 22 01 00 00 00 00 ad de x.......".......
00 00 00 00 00 00 00 00 03 00 cd ab 00 00 00 00 ................
backtrace:
[<ffffffff81dcfa62>] __kmem_cache_alloc_node+0x1e2/0x2d0
[<ffffffff81c43865>] kmalloc_trace+0x25/0xc0
[<ffffffff88968b09>] mac802154_llsec_key_add+0xac9/0xcf0
[<ffffffff8896e41a>] ieee802154_add_llsec_key+0x5a/0x80
[<ffffffff8892adc6>] nl802154_add_llsec_key+0x426/0x5b0
[<ffffffff86ff293e>] genl_family_rcv_msg_doit+0x1fe/0x2f0
[<ffffffff86ff46d1>] genl_rcv_msg+0x531/0x7d0
[<ffffffff86fee7a9>] netlink_rcv_skb+0x169/0x440
[<ffffffff86ff1d88>] genl_rcv+0x28/0x40
[<ffffffff86fec15c>] netlink_unicast+0x53c/0x820
[<ffffffff86fecd8b>] netlink_sendmsg+0x93b/0xe60
[<ffffffff86b91b35>] ____sys_sendmsg+0xac5/0xca0
[<ffffffff86b9c3dd>] ___sys_sendmsg+0x11d/0x1c0
[<ffffffff86b9c65a>] __sys_sendmsg+0xfa/0x1d0
[<ffffffff88eadbf5>] do_syscall_64+0x45/0xf0
[<ffffffff890000ea>] entry_SYSCALL_64_after_hwframe+0x6e/0x76
Handle the proper resource release in the RCU callback function
mac802154_llsec_key_del_rcu().
Note that if llsec_lookup_key() finds a key, it gets a refcount via
llsec_key_get() and locally copies key id from key_entry (which is a
list element). So it's safe to call llsec_key_put() and free the list
entry after the RCU grace period elapses.
Found by Linux Verification Center (linuxtesting.org). |
In the Linux kernel, the following vulnerability has been resolved:
drm/i915/vma: Fix UAF on destroy against retire race
Object debugging tools were sporadically reporting illegal attempts to
free a still active i915 VMA object when parking a GT believed to be idle.
[161.359441] ODEBUG: free active (active state 0) object: ffff88811643b958 object type: i915_active hint: __i915_vma_active+0x0/0x50 [i915]
[161.360082] WARNING: CPU: 5 PID: 276 at lib/debugobjects.c:514 debug_print_object+0x80/0xb0
...
[161.360304] CPU: 5 PID: 276 Comm: kworker/5:2 Not tainted 6.5.0-rc1-CI_DRM_13375-g003f860e5577+ #1
[161.360314] Hardware name: Intel Corporation Rocket Lake Client Platform/RocketLake S UDIMM 6L RVP, BIOS RKLSFWI1.R00.3173.A03.2204210138 04/21/2022
[161.360322] Workqueue: i915-unordered __intel_wakeref_put_work [i915]
[161.360592] RIP: 0010:debug_print_object+0x80/0xb0
...
[161.361347] debug_object_free+0xeb/0x110
[161.361362] i915_active_fini+0x14/0x130 [i915]
[161.361866] release_references+0xfe/0x1f0 [i915]
[161.362543] i915_vma_parked+0x1db/0x380 [i915]
[161.363129] __gt_park+0x121/0x230 [i915]
[161.363515] ____intel_wakeref_put_last+0x1f/0x70 [i915]
That has been tracked down to be happening when another thread is
deactivating the VMA inside __active_retire() helper, after the VMA's
active counter has been already decremented to 0, but before deactivation
of the VMA's object is reported to the object debugging tool.
We could prevent from that race by serializing i915_active_fini() with
__active_retire() via ref->tree_lock, but that wouldn't stop the VMA from
being used, e.g. from __i915_vma_retire() called at the end of
__active_retire(), after that VMA has been already freed by a concurrent
i915_vma_destroy() on return from the i915_active_fini(). Then, we should
rather fix the issue at the VMA level, not in i915_active.
Since __i915_vma_parked() is called from __gt_park() on last put of the
GT's wakeref, the issue could be addressed by holding the GT wakeref long
enough for __active_retire() to complete before that wakeref is released
and the GT parked.
I believe the issue was introduced by commit d93939730347 ("drm/i915:
Remove the vma refcount") which moved a call to i915_active_fini() from
a dropped i915_vma_release(), called on last put of the removed VMA kref,
to i915_vma_parked() processing path called on last put of a GT wakeref.
However, its visibility to the object debugging tool was suppressed by a
bug in i915_active that was fixed two weeks later with commit e92eb246feb9
("drm/i915/active: Fix missing debug object activation").
A VMA associated with a request doesn't acquire a GT wakeref by itself.
Instead, it depends on a wakeref held directly by the request's active
intel_context for a GT associated with its VM, and indirectly on that
intel_context's engine wakeref if the engine belongs to the same GT as the
VMA's VM. Those wakerefs are released asynchronously to VMA deactivation.
Fix the issue by getting a wakeref for the VMA's GT when activating it,
and putting that wakeref only after the VMA is deactivated. However,
exclude global GTT from that processing path, otherwise the GPU never goes
idle. Since __i915_vma_retire() may be called from atomic contexts, use
async variant of wakeref put. Also, to avoid circular locking dependency,
take care of acquiring the wakeref before VM mutex when both are needed.
v7: Add inline comments with justifications for:
- using untracked variants of intel_gt_pm_get/put() (Nirmoy),
- using async variant of _put(),
- not getting the wakeref in case of a global GTT,
- always getting the first wakeref outside vm->mutex.
v6: Since __i915_vma_active/retire() callbacks are not serialized, storing
a wakeref tracking handle inside struct i915_vma is not safe, and
there is no other good place for that. Use untracked variants of
intel_gt_pm_get/put_async().
v5: Replace "tile" with "GT" across commit description (Rodrigo),
-
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in cifs_debug_files_proc_show()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF. |
In the Linux kernel, the following vulnerability has been resolved:
soc: qcom: pmic_glink_altmode: fix drm bridge use-after-free
A recent DRM series purporting to simplify support for "transparent
bridges" and handling of probe deferrals ironically exposed a
use-after-free issue on pmic_glink_altmode probe deferral.
This has manifested itself as the display subsystem occasionally failing
to initialise and NULL-pointer dereferences during boot of machines like
the Lenovo ThinkPad X13s.
Specifically, the dp-hpd bridge is currently registered before all
resources have been acquired which means that it can also be
deregistered on probe deferrals.
In the meantime there is a race window where the new aux bridge driver
(or PHY driver previously) may have looked up the dp-hpd bridge and
stored a (non-reference-counted) pointer to the bridge which is about to
be deallocated.
When the display controller is later initialised, this triggers a
use-after-free when attaching the bridges:
dp -> aux -> dp-hpd (freed)
which may, for example, result in the freed bridge failing to attach:
[drm:drm_bridge_attach [drm]] *ERROR* failed to attach bridge /soc@0/phy@88eb000 to encoder TMDS-31: -16
or a NULL-pointer dereference:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
...
Call trace:
drm_bridge_attach+0x70/0x1a8 [drm]
drm_aux_bridge_attach+0x24/0x38 [aux_bridge]
drm_bridge_attach+0x80/0x1a8 [drm]
dp_bridge_init+0xa8/0x15c [msm]
msm_dp_modeset_init+0x28/0xc4 [msm]
The DRM bridge implementation is clearly fragile and implicitly built on
the assumption that bridges may never go away. In this case, the fix is
to move the bridge registration in the pmic_glink_altmode driver to
after all resources have been looked up.
Incidentally, with the new dp-hpd bridge implementation, which registers
child devices, this is also a requirement due to a long-standing issue
in driver core that can otherwise lead to a probe deferral loop (see
commit fbc35b45f9f6 ("Add documentation on meaning of -EPROBE_DEFER")).
[DB: slightly fixed commit message by adding the word 'commit'] |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix fortify source warning while accessing Eth segment
------------[ cut here ]------------
memcpy: detected field-spanning write (size 56) of single field "eseg->inline_hdr.start" at /var/lib/dkms/mlnx-ofed-kernel/5.8/build/drivers/infiniband/hw/mlx5/wr.c:131 (size 2)
WARNING: CPU: 0 PID: 293779 at /var/lib/dkms/mlnx-ofed-kernel/5.8/build/drivers/infiniband/hw/mlx5/wr.c:131 mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
Modules linked in: 8021q garp mrp stp llc rdma_ucm(OE) rdma_cm(OE) iw_cm(OE) ib_ipoib(OE) ib_cm(OE) ib_umad(OE) mlx5_ib(OE) ib_uverbs(OE) ib_core(OE) mlx5_core(OE) pci_hyperv_intf mlxdevm(OE) mlx_compat(OE) tls mlxfw(OE) psample nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables libcrc32c nfnetlink mst_pciconf(OE) knem(OE) vfio_pci vfio_pci_core vfio_iommu_type1 vfio iommufd irqbypass cuse nfsv3 nfs fscache netfs xfrm_user xfrm_algo ipmi_devintf ipmi_msghandler binfmt_misc crct10dif_pclmul crc32_pclmul polyval_clmulni polyval_generic ghash_clmulni_intel sha512_ssse3 snd_pcsp aesni_intel crypto_simd cryptd snd_pcm snd_timer joydev snd soundcore input_leds serio_raw evbug nfsd auth_rpcgss nfs_acl lockd grace sch_fq_codel sunrpc drm efi_pstore ip_tables x_tables autofs4 psmouse virtio_net net_failover failover floppy
[last unloaded: mlx_compat(OE)]
CPU: 0 PID: 293779 Comm: ssh Tainted: G OE 6.2.0-32-generic #32~22.04.1-Ubuntu
Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
RIP: 0010:mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
Code: 0c 01 00 a8 01 75 25 48 8b 75 a0 b9 02 00 00 00 48 c7 c2 10 5b fd c0 48 c7 c7 80 5b fd c0 c6 05 57 0c 03 00 01 e8 95 4d 93 da <0f> 0b 44 8b 4d b0 4c 8b 45 c8 48 8b 4d c0 e9 49 fb ff ff 41 0f b7
RSP: 0018:ffffb5b48478b570 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffb5b48478b628 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: ffffb5b48478b5e8
R13: ffff963a3c609b5e R14: ffff9639c3fbd800 R15: ffffb5b480475a80
FS: 00007fc03b444c80(0000) GS:ffff963a3dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000556f46bdf000 CR3: 0000000006ac6003 CR4: 00000000003706f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? show_regs+0x72/0x90
? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
? __warn+0x8d/0x160
? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
? report_bug+0x1bb/0x1d0
? handle_bug+0x46/0x90
? exc_invalid_op+0x19/0x80
? asm_exc_invalid_op+0x1b/0x20
? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
mlx5_ib_post_send_nodrain+0xb/0x20 [mlx5_ib]
ipoib_send+0x2ec/0x770 [ib_ipoib]
ipoib_start_xmit+0x5a0/0x770 [ib_ipoib]
dev_hard_start_xmit+0x8e/0x1e0
? validate_xmit_skb_list+0x4d/0x80
sch_direct_xmit+0x116/0x3a0
__dev_xmit_skb+0x1fd/0x580
__dev_queue_xmit+0x284/0x6b0
? _raw_spin_unlock_irq+0xe/0x50
? __flush_work.isra.0+0x20d/0x370
? push_pseudo_header+0x17/0x40 [ib_ipoib]
neigh_connected_output+0xcd/0x110
ip_finish_output2+0x179/0x480
? __smp_call_single_queue+0x61/0xa0
__ip_finish_output+0xc3/0x190
ip_finish_output+0x2e/0xf0
ip_output+0x78/0x110
? __pfx_ip_finish_output+0x10/0x10
ip_local_out+0x64/0x70
__ip_queue_xmit+0x18a/0x460
ip_queue_xmit+0x15/0x30
__tcp_transmit_skb+0x914/0x9c0
tcp_write_xmit+0x334/0x8d0
tcp_push_one+0x3c/0x60
tcp_sendmsg_locked+0x2e1/0xac0
tcp_sendmsg+0x2d/0x50
inet_sendmsg+0x43/0x90
sock_sendmsg+0x68/0x80
sock_write_iter+0x93/0x100
vfs_write+0x326/0x3c0
ksys_write+0xbd/0xf0
? do_syscall_64+0x69/0x90
__x64_sys_write+0x19/0x30
do_syscall_
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
aoe: fix the potential use-after-free problem in aoecmd_cfg_pkts
This patch is against CVE-2023-6270. The description of cve is:
A flaw was found in the ATA over Ethernet (AoE) driver in the Linux
kernel. The aoecmd_cfg_pkts() function improperly updates the refcnt on
`struct net_device`, and a use-after-free can be triggered by racing
between the free on the struct and the access through the `skbtxq`
global queue. This could lead to a denial of service condition or
potential code execution.
In aoecmd_cfg_pkts(), it always calls dev_put(ifp) when skb initial
code is finished. But the net_device ifp will still be used in
later tx()->dev_queue_xmit() in kthread. Which means that the
dev_put(ifp) should NOT be called in the success path of skb
initial code in aoecmd_cfg_pkts(). Otherwise tx() may run into
use-after-free because the net_device is freed.
This patch removed the dev_put(ifp) in the success path in
aoecmd_cfg_pkts(), and added dev_put() after skb xmit in tx(). |
In the Linux kernel, the following vulnerability has been resolved:
wifi: wilc1000: prevent use-after-free on vif when cleaning up all interfaces
wilc_netdev_cleanup currently triggers a KASAN warning, which can be
observed on interface registration error path, or simply by
removing the module/unbinding device from driver:
echo spi0.1 > /sys/bus/spi/drivers/wilc1000_spi/unbind
==================================================================
BUG: KASAN: slab-use-after-free in wilc_netdev_cleanup+0x508/0x5cc
Read of size 4 at addr c54d1ce8 by task sh/86
CPU: 0 PID: 86 Comm: sh Not tainted 6.8.0-rc1+ #117
Hardware name: Atmel SAMA5
unwind_backtrace from show_stack+0x18/0x1c
show_stack from dump_stack_lvl+0x34/0x58
dump_stack_lvl from print_report+0x154/0x500
print_report from kasan_report+0xac/0xd8
kasan_report from wilc_netdev_cleanup+0x508/0x5cc
wilc_netdev_cleanup from wilc_bus_remove+0xc8/0xec
wilc_bus_remove from spi_remove+0x8c/0xac
spi_remove from device_release_driver_internal+0x434/0x5f8
device_release_driver_internal from unbind_store+0xbc/0x108
unbind_store from kernfs_fop_write_iter+0x398/0x584
kernfs_fop_write_iter from vfs_write+0x728/0xf88
vfs_write from ksys_write+0x110/0x1e4
ksys_write from ret_fast_syscall+0x0/0x1c
[...]
Allocated by task 1:
kasan_save_track+0x30/0x5c
__kasan_kmalloc+0x8c/0x94
__kmalloc_node+0x1cc/0x3e4
kvmalloc_node+0x48/0x180
alloc_netdev_mqs+0x68/0x11dc
alloc_etherdev_mqs+0x28/0x34
wilc_netdev_ifc_init+0x34/0x8ec
wilc_cfg80211_init+0x690/0x910
wilc_bus_probe+0xe0/0x4a0
spi_probe+0x158/0x1b0
really_probe+0x270/0xdf4
__driver_probe_device+0x1dc/0x580
driver_probe_device+0x60/0x140
__driver_attach+0x228/0x5d4
bus_for_each_dev+0x13c/0x1a8
bus_add_driver+0x2a0/0x608
driver_register+0x24c/0x578
do_one_initcall+0x180/0x310
kernel_init_freeable+0x424/0x484
kernel_init+0x20/0x148
ret_from_fork+0x14/0x28
Freed by task 86:
kasan_save_track+0x30/0x5c
kasan_save_free_info+0x38/0x58
__kasan_slab_free+0xe4/0x140
kfree+0xb0/0x238
device_release+0xc0/0x2a8
kobject_put+0x1d4/0x46c
netdev_run_todo+0x8fc/0x11d0
wilc_netdev_cleanup+0x1e4/0x5cc
wilc_bus_remove+0xc8/0xec
spi_remove+0x8c/0xac
device_release_driver_internal+0x434/0x5f8
unbind_store+0xbc/0x108
kernfs_fop_write_iter+0x398/0x584
vfs_write+0x728/0xf88
ksys_write+0x110/0x1e4
ret_fast_syscall+0x0/0x1c
[...]
David Mosberger-Tan initial investigation [1] showed that this
use-after-free is due to netdevice unregistration during vif list
traversal. When unregistering a net device, since the needs_free_netdev has
been set to true during registration, the netdevice object is also freed,
and as a consequence, the corresponding vif object too, since it is
attached to it as private netdevice data. The next occurrence of the loop
then tries to access freed vif pointer to the list to move forward in the
list.
Fix this use-after-free thanks to two mechanisms:
- navigate in the list with list_for_each_entry_safe, which allows to
safely modify the list as we go through each element. For each element,
remove it from the list with list_del_rcu
- make sure to wait for RCU grace period end after each vif removal to make
sure it is safe to free the corresponding vif too (through
unregister_netdev)
Since we are in a RCU "modifier" path (not a "reader" path), and because
such path is expected not to be concurrent to any other modifier (we are
using the vif_mutex lock), we do not need to use RCU list API, that's why
we can benefit from list_for_each_entry_safe.
[1] https://lore.kernel.org/linux-wireless/ab077dbe58b1ea5de0a3b2ca21f275a07af967d2.camel@egauge.net/ |
In the Linux kernel, the following vulnerability has been resolved:
media: pvrusb2: fix uaf in pvr2_context_set_notify
[Syzbot reported]
BUG: KASAN: slab-use-after-free in pvr2_context_set_notify+0x2c4/0x310 drivers/media/usb/pvrusb2/pvrusb2-context.c:35
Read of size 4 at addr ffff888113aeb0d8 by task kworker/1:1/26
CPU: 1 PID: 26 Comm: kworker/1:1 Not tainted 6.8.0-rc1-syzkaller-00046-gf1a27f081c1f #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
Workqueue: usb_hub_wq hub_event
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xd9/0x1b0 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:377 [inline]
print_report+0xc4/0x620 mm/kasan/report.c:488
kasan_report+0xda/0x110 mm/kasan/report.c:601
pvr2_context_set_notify+0x2c4/0x310 drivers/media/usb/pvrusb2/pvrusb2-context.c:35
pvr2_context_notify drivers/media/usb/pvrusb2/pvrusb2-context.c:95 [inline]
pvr2_context_disconnect+0x94/0xb0 drivers/media/usb/pvrusb2/pvrusb2-context.c:272
Freed by task 906:
kasan_save_stack+0x33/0x50 mm/kasan/common.c:47
kasan_save_track+0x14/0x30 mm/kasan/common.c:68
kasan_save_free_info+0x3f/0x60 mm/kasan/generic.c:640
poison_slab_object mm/kasan/common.c:241 [inline]
__kasan_slab_free+0x106/0x1b0 mm/kasan/common.c:257
kasan_slab_free include/linux/kasan.h:184 [inline]
slab_free_hook mm/slub.c:2121 [inline]
slab_free mm/slub.c:4299 [inline]
kfree+0x105/0x340 mm/slub.c:4409
pvr2_context_check drivers/media/usb/pvrusb2/pvrusb2-context.c:137 [inline]
pvr2_context_thread_func+0x69d/0x960 drivers/media/usb/pvrusb2/pvrusb2-context.c:158
[Analyze]
Task A set disconnect_flag = !0, which resulted in Task B's condition being met
and releasing mp, leading to this issue.
[Fix]
Place the disconnect_flag assignment operation after all code in pvr2_context_disconnect()
to avoid this issue. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/srpt: Do not register event handler until srpt device is fully setup
Upon rare occasions, KASAN reports a use-after-free Write
in srpt_refresh_port().
This seems to be because an event handler is registered before the
srpt device is fully setup and a race condition upon error may leave a
partially setup event handler in place.
Instead, only register the event handler after srpt device initialization
is complete. |
In the Linux kernel, the following vulnerability has been resolved:
spi: lpspi: Avoid potential use-after-free in probe()
fsl_lpspi_probe() is allocating/disposing memory manually with
spi_alloc_host()/spi_alloc_target(), but uses
devm_spi_register_controller(). In case of error after the latter call the
memory will be explicitly freed in the probe function by
spi_controller_put() call, but used afterwards by "devm" management outside
probe() (spi_unregister_controller() <- devm_spi_unregister() below).
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000070
...
Call trace:
kernfs_find_ns
kernfs_find_and_get_ns
sysfs_remove_group
sysfs_remove_groups
device_remove_attrs
device_del
spi_unregister_controller
devm_spi_unregister
release_nodes
devres_release_all
really_probe
driver_probe_device
__device_attach_driver
bus_for_each_drv
__device_attach
device_initial_probe
bus_probe_device
deferred_probe_work_func
process_one_work
worker_thread
kthread
ret_from_fork |
In the Linux kernel, the following vulnerability has been resolved:
rds: tcp: Fix use-after-free of net in reqsk_timer_handler().
syzkaller reported a warning of netns tracker [0] followed by KASAN
splat [1] and another ref tracker warning [1].
syzkaller could not find a repro, but in the log, the only suspicious
sequence was as follows:
18:26:22 executing program 1:
r0 = socket$inet6_mptcp(0xa, 0x1, 0x106)
...
connect$inet6(r0, &(0x7f0000000080)={0xa, 0x4001, 0x0, @loopback}, 0x1c) (async)
The notable thing here is 0x4001 in connect(), which is RDS_TCP_PORT.
So, the scenario would be:
1. unshare(CLONE_NEWNET) creates a per netns tcp listener in
rds_tcp_listen_init().
2. syz-executor connect()s to it and creates a reqsk.
3. syz-executor exit()s immediately.
4. netns is dismantled. [0]
5. reqsk timer is fired, and UAF happens while freeing reqsk. [1]
6. listener is freed after RCU grace period. [2]
Basically, reqsk assumes that the listener guarantees netns safety
until all reqsk timers are expired by holding the listener's refcount.
However, this was not the case for kernel sockets.
Commit 740ea3c4a0b2 ("tcp: Clean up kernel listener's reqsk in
inet_twsk_purge()") fixed this issue only for per-netns ehash.
Let's apply the same fix for the global ehash.
[0]:
ref_tracker: net notrefcnt@0000000065449cc3 has 1/1 users at
sk_alloc (./include/net/net_namespace.h:337 net/core/sock.c:2146)
inet6_create (net/ipv6/af_inet6.c:192 net/ipv6/af_inet6.c:119)
__sock_create (net/socket.c:1572)
rds_tcp_listen_init (net/rds/tcp_listen.c:279)
rds_tcp_init_net (net/rds/tcp.c:577)
ops_init (net/core/net_namespace.c:137)
setup_net (net/core/net_namespace.c:340)
copy_net_ns (net/core/net_namespace.c:497)
create_new_namespaces (kernel/nsproxy.c:110)
unshare_nsproxy_namespaces (kernel/nsproxy.c:228 (discriminator 4))
ksys_unshare (kernel/fork.c:3429)
__x64_sys_unshare (kernel/fork.c:3496)
do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:129)
...
WARNING: CPU: 0 PID: 27 at lib/ref_tracker.c:179 ref_tracker_dir_exit (lib/ref_tracker.c:179)
[1]:
BUG: KASAN: slab-use-after-free in inet_csk_reqsk_queue_drop (./include/net/inet_hashtables.h:180 net/ipv4/inet_connection_sock.c:952 net/ipv4/inet_connection_sock.c:966)
Read of size 8 at addr ffff88801b370400 by task swapper/0/0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl (lib/dump_stack.c:107 (discriminator 1))
print_report (mm/kasan/report.c:378 mm/kasan/report.c:488)
kasan_report (mm/kasan/report.c:603)
inet_csk_reqsk_queue_drop (./include/net/inet_hashtables.h:180 net/ipv4/inet_connection_sock.c:952 net/ipv4/inet_connection_sock.c:966)
reqsk_timer_handler (net/ipv4/inet_connection_sock.c:979 net/ipv4/inet_connection_sock.c:1092)
call_timer_fn (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./include/trace/events/timer.h:127 kernel/time/timer.c:1701)
__run_timers.part.0 (kernel/time/timer.c:1752 kernel/time/timer.c:2038)
run_timer_softirq (kernel/time/timer.c:2053)
__do_softirq (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./include/trace/events/irq.h:142 kernel/softirq.c:554)
irq_exit_rcu (kernel/softirq.c:427 kernel/softirq.c:632 kernel/softirq.c:644)
sysvec_apic_timer_interrupt (arch/x86/kernel/apic/apic.c:1076 (discriminator 14))
</IRQ>
Allocated by task 258 on cpu 0 at 83.612050s:
kasan_save_stack (mm/kasan/common.c:48)
kasan_save_track (mm/kasan/common.c:68)
__kasan_slab_alloc (mm/kasan/common.c:343)
kmem_cache_alloc (mm/slub.c:3813 mm/slub.c:3860 mm/slub.c:3867)
copy_net_ns (./include/linux/slab.h:701 net/core/net_namespace.c:421 net/core/net_namespace.c:480)
create_new_namespaces (kernel/nsproxy.c:110)
unshare_nsproxy_name
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
net/ipv6: avoid possible UAF in ip6_route_mpath_notify()
syzbot found another use-after-free in ip6_route_mpath_notify() [1]
Commit f7225172f25a ("net/ipv6: prevent use after free in
ip6_route_mpath_notify") was not able to fix the root cause.
We need to defer the fib6_info_release() calls after
ip6_route_mpath_notify(), in the cleanup phase.
[1]
BUG: KASAN: slab-use-after-free in rt6_fill_node+0x1460/0x1ac0
Read of size 4 at addr ffff88809a07fc64 by task syz-executor.2/23037
CPU: 0 PID: 23037 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-01035-gea7f3cfaa588 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2e0 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x167/0x540 mm/kasan/report.c:488
kasan_report+0x142/0x180 mm/kasan/report.c:601
rt6_fill_node+0x1460/0x1ac0
inet6_rt_notify+0x13b/0x290 net/ipv6/route.c:6184
ip6_route_mpath_notify net/ipv6/route.c:5198 [inline]
ip6_route_multipath_add net/ipv6/route.c:5404 [inline]
inet6_rtm_newroute+0x1d0f/0x2300 net/ipv6/route.c:5517
rtnetlink_rcv_msg+0x885/0x1040 net/core/rtnetlink.c:6597
netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543
netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline]
netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367
netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:745
____sys_sendmsg+0x525/0x7d0 net/socket.c:2584
___sys_sendmsg net/socket.c:2638 [inline]
__sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667
do_syscall_64+0xf9/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
RIP: 0033:0x7f73dd87dda9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f73de6550c8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f73dd9ac050 RCX: 00007f73dd87dda9
RDX: 0000000000000000 RSI: 0000000020000140 RDI: 0000000000000005
RBP: 00007f73dd8ca47a R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000006e R14: 00007f73dd9ac050 R15: 00007ffdbdeb7858
</TASK>
Allocated by task 23037:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:372 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:389
kasan_kmalloc include/linux/kasan.h:211 [inline]
__do_kmalloc_node mm/slub.c:3981 [inline]
__kmalloc+0x22e/0x490 mm/slub.c:3994
kmalloc include/linux/slab.h:594 [inline]
kzalloc include/linux/slab.h:711 [inline]
fib6_info_alloc+0x2e/0xf0 net/ipv6/ip6_fib.c:155
ip6_route_info_create+0x445/0x12b0 net/ipv6/route.c:3758
ip6_route_multipath_add net/ipv6/route.c:5298 [inline]
inet6_rtm_newroute+0x744/0x2300 net/ipv6/route.c:5517
rtnetlink_rcv_msg+0x885/0x1040 net/core/rtnetlink.c:6597
netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543
netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline]
netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367
netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:745
____sys_sendmsg+0x525/0x7d0 net/socket.c:2584
___sys_sendmsg net/socket.c:2638 [inline]
__sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667
do_syscall_64+0xf9/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
Freed by task 16:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x4e/0x60 mm/kasan/generic.c:640
poison_slab_object+0xa6/0xe0 m
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/irdma: Fix KASAN issue with tasklet
KASAN testing revealed the following issue assocated with freeing an IRQ.
[50006.466686] Call Trace:
[50006.466691] <IRQ>
[50006.489538] dump_stack+0x5c/0x80
[50006.493475] print_address_description.constprop.6+0x1a/0x150
[50006.499872] ? irdma_sc_process_ceq+0x483/0x790 [irdma]
[50006.505742] ? irdma_sc_process_ceq+0x483/0x790 [irdma]
[50006.511644] kasan_report.cold.11+0x7f/0x118
[50006.516572] ? irdma_sc_process_ceq+0x483/0x790 [irdma]
[50006.522473] irdma_sc_process_ceq+0x483/0x790 [irdma]
[50006.528232] irdma_process_ceq+0xb2/0x400 [irdma]
[50006.533601] ? irdma_hw_flush_wqes_callback+0x370/0x370 [irdma]
[50006.540298] irdma_ceq_dpc+0x44/0x100 [irdma]
[50006.545306] tasklet_action_common.isra.14+0x148/0x2c0
[50006.551096] __do_softirq+0x1d0/0xaf8
[50006.555396] irq_exit_rcu+0x219/0x260
[50006.559670] irq_exit+0xa/0x20
[50006.563320] smp_apic_timer_interrupt+0x1bf/0x690
[50006.568645] apic_timer_interrupt+0xf/0x20
[50006.573341] </IRQ>
The issue is that a tasklet could be pending on another core racing
the delete of the irq.
Fix by insuring any scheduled tasklet is killed after deleting the
irq. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_chain_filter: handle NETDEV_UNREGISTER for inet/ingress basechain
Remove netdevice from inet/ingress basechain in case NETDEV_UNREGISTER
event is reported, otherwise a stale reference to netdevice remains in
the hook list. |
In the Linux kernel, the following vulnerability has been resolved:
spi: cadence-qspi: remove system-wide suspend helper calls from runtime PM hooks
The ->runtime_suspend() and ->runtime_resume() callbacks are not
expected to call spi_controller_suspend() and spi_controller_resume().
Remove calls to those in the cadence-qspi driver.
Those helpers have two roles currently:
- They stop/start the queue, including dealing with the kworker.
- They toggle the SPI controller SPI_CONTROLLER_SUSPENDED flag. It
requires acquiring ctlr->bus_lock_mutex.
Step one is irrelevant because cadence-qspi is not queued. Step two
however has two implications:
- A deadlock occurs, because ->runtime_resume() is called in a context
where the lock is already taken (in the ->exec_op() callback, where
the usage count is incremented).
- It would disallow all operations once the device is auto-suspended.
Here is a brief call tree highlighting the mutex deadlock:
spi_mem_exec_op()
...
spi_mem_access_start()
mutex_lock(&ctlr->bus_lock_mutex)
cqspi_exec_mem_op()
pm_runtime_resume_and_get()
cqspi_resume()
spi_controller_resume()
mutex_lock(&ctlr->bus_lock_mutex)
...
spi_mem_access_end()
mutex_unlock(&ctlr->bus_lock_mutex)
... |
In the Linux kernel, the following vulnerability has been resolved:
stmmac: Clear variable when destroying workqueue
Currently when suspending driver and stopping workqueue it is checked whether
workqueue is not NULL and if so, it is destroyed.
Function destroy_workqueue() does drain queue and does clear variable, but
it does not set workqueue variable to NULL. This can cause kernel/module
panic if code attempts to clear workqueue that was not initialized.
This scenario is possible when resuming suspended driver in stmmac_resume(),
because there is no handling for failed stmmac_hw_setup(),
which can fail and return if DMA engine has failed to initialize,
and workqueue is initialized after DMA engine.
Should DMA engine fail to initialize, resume will proceed normally,
but interface won't work and TX queue will eventually timeout,
causing 'Reset adapter' error.
This then does destroy workqueue during reset process.
And since workqueue is initialized after DMA engine and can be skipped,
it will cause kernel/module panic.
To secure against this possible crash, set workqueue variable to NULL when
destroying workqueue.
Log/backtrace from crash goes as follows:
[88.031977]------------[ cut here ]------------
[88.031985]NETDEV WATCHDOG: eth0 (sxgmac): transmit queue 1 timed out
[88.032017]WARNING: CPU: 0 PID: 0 at net/sched/sch_generic.c:477 dev_watchdog+0x390/0x398
<Skipping backtrace for watchdog timeout>
[88.032251]---[ end trace e70de432e4d5c2c0 ]---
[88.032282]sxgmac 16d88000.ethernet eth0: Reset adapter.
[88.036359]------------[ cut here ]------------
[88.036519]Call trace:
[88.036523] flush_workqueue+0x3e4/0x430
[88.036528] drain_workqueue+0xc4/0x160
[88.036533] destroy_workqueue+0x40/0x270
[88.036537] stmmac_fpe_stop_wq+0x4c/0x70
[88.036541] stmmac_release+0x278/0x280
[88.036546] __dev_close_many+0xcc/0x158
[88.036551] dev_close_many+0xbc/0x190
[88.036555] dev_close.part.0+0x70/0xc0
[88.036560] dev_close+0x24/0x30
[88.036564] stmmac_service_task+0x110/0x140
[88.036569] process_one_work+0x1d8/0x4a0
[88.036573] worker_thread+0x54/0x408
[88.036578] kthread+0x164/0x170
[88.036583] ret_from_fork+0x10/0x20
[88.036588]---[ end trace e70de432e4d5c2c1 ]---
[88.036597]Unable to handle kernel NULL pointer dereference at virtual address 0000000000000004 |