CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In libxml2 before 2.10.4, parsing of certain invalid XSD schemas can lead to a NULL pointer dereference and subsequently a segfault. This occurs in xmlSchemaFixupComplexType in xmlschemas.c. |
In libexpat through 2.4.9, there is a use-after free caused by overeager destruction of a shared DTD in XML_ExternalEntityParserCreate in out-of-memory situations. |
libexpat before 2.4.9 has a use-after-free in the doContent function in xmlparse.c. |
zlib through 1.2.12 has a heap-based buffer over-read or buffer overflow in inflate in inflate.c via a large gzip header extra field. NOTE: only applications that call inflateGetHeader are affected. Some common applications bundle the affected zlib source code but may be unable to call inflateGetHeader (e.g., see the nodejs/node reference). |
In Expat (aka libexpat) before 2.4.5, an attacker can trigger stack exhaustion in build_model via a large nesting depth in the DTD element. |
json-c through 0.14 has an integer overflow and out-of-bounds write via a large JSON file, as demonstrated by printbuf_memappend. |
In libexpat before 2.2.8, crafted XML input could fool the parser into changing from DTD parsing to document parsing too early; a consecutive call to XML_GetCurrentLineNumber (or XML_GetCurrentColumnNumber) then resulted in a heap-based buffer over-read. |
In libexpat in Expat before 2.2.7, XML input including XML names that contain a large number of colons could make the XML parser consume a high amount of RAM and CPU resources while processing (enough to be usable for denial-of-service attacks). |
A code execution vulnerability exists in the directory rehashing functionality of E2fsprogs e2fsck 1.45.4. A specially crafted ext4 directory can cause an out-of-bounds write on the stack, resulting in code execution. An attacker can corrupt a partition to trigger this vulnerability. |
An exploitable code execution vulnerability exists in the quota file functionality of E2fsprogs 1.45.3. A specially crafted ext4 partition can cause an out-of-bounds write on the heap, resulting in code execution. An attacker can corrupt a partition to trigger this vulnerability. |
aiohttp is an asynchronous HTTP client/server framework for asyncio and Python. When using aiohttp as a web server and configuring static routes, it is necessary to specify the root path for static files. Additionally, the option 'follow_symlinks' can be used to determine whether to follow symbolic links outside the static root directory. When 'follow_symlinks' is set to True, there is no validation to check if reading a file is within the root directory. This can lead to directory traversal vulnerabilities, resulting in unauthorized access to arbitrary files on the system, even when symlinks are not present. Disabling follow_symlinks and using a reverse proxy are encouraged mitigations. Version 3.9.2 fixes this issue. |
In the Linux kernel, the following vulnerability has been resolved:
drm/i915/hwmon: Get rid of devm
When both hwmon and hwmon drvdata (on which hwmon depends) are device
managed resources, the expectation, on device unbind, is that hwmon will be
released before drvdata. However, in i915 there are two separate code
paths, which both release either drvdata or hwmon and either can be
released before the other. These code paths (for device unbind) are as
follows (see also the bug referenced below):
Call Trace:
release_nodes+0x11/0x70
devres_release_group+0xb2/0x110
component_unbind_all+0x8d/0xa0
component_del+0xa5/0x140
intel_pxp_tee_component_fini+0x29/0x40 [i915]
intel_pxp_fini+0x33/0x80 [i915]
i915_driver_remove+0x4c/0x120 [i915]
i915_pci_remove+0x19/0x30 [i915]
pci_device_remove+0x32/0xa0
device_release_driver_internal+0x19c/0x200
unbind_store+0x9c/0xb0
and
Call Trace:
release_nodes+0x11/0x70
devres_release_all+0x8a/0xc0
device_unbind_cleanup+0x9/0x70
device_release_driver_internal+0x1c1/0x200
unbind_store+0x9c/0xb0
This means that in i915, if use devm, we cannot gurantee that hwmon will
always be released before drvdata. Which means that we have a uaf if hwmon
sysfs is accessed when drvdata has been released but hwmon hasn't.
The only way out of this seems to be do get rid of devm_ and release/free
everything explicitly during device unbind.
v2: Change commit message and other minor code changes
v3: Cleanup from i915_hwmon_register on error (Armin Wolf)
v4: Eliminate potential static analyzer warning (Rodrigo)
Eliminate fetch_and_zero (Jani)
v5: Restore previous logic for ddat_gt->hwmon_dev error return (Andi) |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix buffer size in gfx_v9_4_3_init_ cp_compute_microcode() and rlc_microcode()
The function gfx_v9_4_3_init_microcode in gfx_v9_4_3.c was generating
about potential truncation of output when using the snprintf function.
The issue was due to the size of the buffer 'ucode_prefix' being too
small to accommodate the maximum possible length of the string being
written into it.
The string being written is "amdgpu/%s_mec.bin" or "amdgpu/%s_rlc.bin",
where %s is replaced by the value of 'chip_name'. The length of this
string without the %s is 16 characters. The warning message indicated
that 'chip_name' could be up to 29 characters long, resulting in a total
of 45 characters, which exceeds the buffer size of 30 characters.
To resolve this issue, the size of the 'ucode_prefix' buffer has been
reduced from 30 to 15. This ensures that the maximum possible length of
the string being written into the buffer will not exceed its size, thus
preventing potential buffer overflow and truncation issues.
Fixes the below with gcc W=1:
drivers/gpu/drm/amd/amdgpu/gfx_v9_4_3.c: In function ‘gfx_v9_4_3_early_init’:
drivers/gpu/drm/amd/amdgpu/gfx_v9_4_3.c:379:52: warning: ‘%s’ directive output may be truncated writing up to 29 bytes into a region of size 23 [-Wformat-truncation=]
379 | snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_rlc.bin", chip_name);
| ^~
......
439 | r = gfx_v9_4_3_init_rlc_microcode(adev, ucode_prefix);
| ~~~~~~~~~~~~
drivers/gpu/drm/amd/amdgpu/gfx_v9_4_3.c:379:9: note: ‘snprintf’ output between 16 and 45 bytes into a destination of size 30
379 | snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_rlc.bin", chip_name);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
drivers/gpu/drm/amd/amdgpu/gfx_v9_4_3.c:413:52: warning: ‘%s’ directive output may be truncated writing up to 29 bytes into a region of size 23 [-Wformat-truncation=]
413 | snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec.bin", chip_name);
| ^~
......
443 | r = gfx_v9_4_3_init_cp_compute_microcode(adev, ucode_prefix);
| ~~~~~~~~~~~~
drivers/gpu/drm/amd/amdgpu/gfx_v9_4_3.c:413:9: note: ‘snprintf’ output between 16 and 45 bytes into a destination of size 30
413 | snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec.bin", chip_name);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
In the Linux kernel through 6.7.1, there is a use-after-free in cec_queue_msg_fh, related to drivers/media/cec/core/cec-adap.c and drivers/media/cec/core/cec-api.c. |
An unchecked return value in TLS handshake code could have caused a potentially exploitable crash. This vulnerability affects Firefox < 122, Firefox ESR < 115.9, and Thunderbird < 115.9. |
It was possible for certain browser prompts and dialogs to be activated or dismissed unintentionally by the user due to an incorrect timestamp used to prevent input after page load. This vulnerability affects Firefox < 122, Firefox ESR < 115.7, and Thunderbird < 115.7. |
An out of bounds write in ANGLE could have allowed an attacker to corrupt memory leading to a potentially exploitable crash. This vulnerability affects Firefox < 122, Firefox ESR < 115.7, and Thunderbird < 115.7. |
Argo CD is a declarative, GitOps continuous delivery tool for Kubernetes. The Argo CD API prior to versions 2.10-rc2, 2.9.4, 2.8.8, and 2.7.15 are vulnerable to a cross-server request forgery (CSRF) attack when the attacker has the ability to write HTML to a page on the same parent domain as Argo CD. A CSRF attack works by tricking an authenticated Argo CD user into loading a web page which contains code to call Argo CD API endpoints on the victim’s behalf. For example, an attacker could send an Argo CD user a link to a page which looks harmless but in the background calls an Argo CD API endpoint to create an application running malicious code. Argo CD uses the “Lax” SameSite cookie policy to prevent CSRF attacks where the attacker controls an external domain. The malicious external website can attempt to call the Argo CD API, but the web browser will refuse to send the Argo CD auth token with the request. Many companies host Argo CD on an internal subdomain. If an attacker can place malicious code on, for example, https://test.internal.example.com/, they can still perform a CSRF attack. In this case, the “Lax” SameSite cookie does not prevent the browser from sending the auth cookie, because the destination is a parent domain of the Argo CD API. Browsers generally block such attacks by applying CORS policies to sensitive requests with sensitive content types. Specifically, browsers will send a “preflight request” for POSTs with content type “application/json” asking the destination API “are you allowed to accept requests from my domain?” If the destination API does not answer “yes,” the browser will block the request. Before the patched versions, Argo CD did not validate that requests contained the correct content type header. So an attacker could bypass the browser’s CORS check by setting the content type to something which is considered “not sensitive” such as “text/plain.” The browser wouldn’t send the preflight request, and Argo CD would happily accept the contents (which are actually still JSON) and perform the requested action (such as running malicious code). A patch for this vulnerability has been released in the following Argo CD versions: 2.10-rc2, 2.9.4, 2.8.8, and 2.7.15. The patch contains a breaking API change. The Argo CD API will no longer accept non-GET requests which do not specify application/json as their Content-Type. The accepted content types list is configurable, and it is possible (but discouraged) to disable the content type check completely. Users are advised to upgrade. There are no known workarounds for this vulnerability. |
FreeRDP is a set of free and open source remote desktop protocol library and clients. In affected versions an integer overflow in `freerdp_bitmap_planar_context_reset` leads to heap-buffer overflow. This affects FreeRDP based clients. FreeRDP based server implementations and proxy are not affected. A malicious server could prepare a `RDPGFX_RESET_GRAPHICS_PDU` to allocate too small buffers, possibly triggering later out of bound read/write. Data extraction over network is not possible, the buffers are used to display an image. This issue has been addressed in version 2.11.5 and 3.2.0. Users are advised to upgrade. there are no know workarounds for this vulnerability. |
XStream is software for serializing Java objects to XML and back again. A vulnerability in XStream versions prior to 1.4.17 may allow a remote attacker has sufficient rights to execute commands of the host only by manipulating the processed input stream. No user who followed the recommendation to setup XStream's security framework with a whitelist limited to the minimal required types is affected. The vulnerability is patched in version 1.4.17. |