CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
ipvs: properly dereference pe in ip_vs_add_service
Use pe directly to resolve sparse warning:
net/netfilter/ipvs/ip_vs_ctl.c:1471:27: warning: dereference of noderef expression |
In the Linux kernel, the following vulnerability has been resolved:
dev/parport: fix the array out-of-bounds risk
Fixed array out-of-bounds issues caused by sprintf
by replacing it with snprintf for safer data copying,
ensuring the destination buffer is not overflowed.
Below is the stack trace I encountered during the actual issue:
[ 66.575408s] [pid:5118,cpu4,QThread,4]Kernel panic - not syncing: stack-protector:
Kernel stack is corrupted in: do_hardware_base_addr+0xcc/0xd0 [parport]
[ 66.575408s] [pid:5118,cpu4,QThread,5]CPU: 4 PID: 5118 Comm:
QThread Tainted: G S W O 5.10.97-arm64-desktop #7100.57021.2
[ 66.575439s] [pid:5118,cpu4,QThread,6]TGID: 5087 Comm: EFileApp
[ 66.575439s] [pid:5118,cpu4,QThread,7]Hardware name: HUAWEI HUAWEI QingYun
PGUX-W515x-B081/SP1PANGUXM, BIOS 1.00.07 04/29/2024
[ 66.575439s] [pid:5118,cpu4,QThread,8]Call trace:
[ 66.575469s] [pid:5118,cpu4,QThread,9] dump_backtrace+0x0/0x1c0
[ 66.575469s] [pid:5118,cpu4,QThread,0] show_stack+0x14/0x20
[ 66.575469s] [pid:5118,cpu4,QThread,1] dump_stack+0xd4/0x10c
[ 66.575500s] [pid:5118,cpu4,QThread,2] panic+0x1d8/0x3bc
[ 66.575500s] [pid:5118,cpu4,QThread,3] __stack_chk_fail+0x2c/0x38
[ 66.575500s] [pid:5118,cpu4,QThread,4] do_hardware_base_addr+0xcc/0xd0 [parport] |
In the Linux kernel, the following vulnerability has been resolved:
tipc: Return non-zero value from tipc_udp_addr2str() on error
tipc_udp_addr2str() should return non-zero value if the UDP media
address is invalid. Otherwise, a buffer overflow access can occur in
tipc_media_addr_printf(). Fix this by returning 1 on an invalid UDP
media address. |
In the Linux kernel, the following vulnerability has been resolved:
net/iucv: fix use after free in iucv_sock_close()
iucv_sever_path() is called from process context and from bh context.
iucv->path is used as indicator whether somebody else is taking care of
severing the path (or it is already removed / never existed).
This needs to be done with atomic compare and swap, otherwise there is a
small window where iucv_sock_close() will try to work with a path that has
already been severed and freed by iucv_callback_connrej() called by
iucv_tasklet_fn().
Example:
[452744.123844] Call Trace:
[452744.123845] ([<0000001e87f03880>] 0x1e87f03880)
[452744.123966] [<00000000d593001e>] iucv_path_sever+0x96/0x138
[452744.124330] [<000003ff801ddbca>] iucv_sever_path+0xc2/0xd0 [af_iucv]
[452744.124336] [<000003ff801e01b6>] iucv_sock_close+0xa6/0x310 [af_iucv]
[452744.124341] [<000003ff801e08cc>] iucv_sock_release+0x3c/0xd0 [af_iucv]
[452744.124345] [<00000000d574794e>] __sock_release+0x5e/0xe8
[452744.124815] [<00000000d5747a0c>] sock_close+0x34/0x48
[452744.124820] [<00000000d5421642>] __fput+0xba/0x268
[452744.124826] [<00000000d51b382c>] task_work_run+0xbc/0xf0
[452744.124832] [<00000000d5145710>] do_notify_resume+0x88/0x90
[452744.124841] [<00000000d5978096>] system_call+0xe2/0x2c8
[452744.125319] Last Breaking-Event-Address:
[452744.125321] [<00000000d5930018>] iucv_path_sever+0x90/0x138
[452744.125324]
[452744.125325] Kernel panic - not syncing: Fatal exception in interrupt
Note that bh_lock_sock() is not serializing the tasklet context against
process context, because the check for sock_owned_by_user() and
corresponding handling is missing.
Ideas for a future clean-up patch:
A) Correct usage of bh_lock_sock() in tasklet context, as described in
Re-enqueue, if needed. This may require adding return values to the
tasklet functions and thus changes to all users of iucv.
B) Change iucv tasklet into worker and use only lock_sock() in af_iucv. |
In the Linux kernel, the following vulnerability has been resolved:
protect the fetch of ->fd[fd] in do_dup2() from mispredictions
both callers have verified that fd is not greater than ->max_fds;
however, misprediction might end up with
tofree = fdt->fd[fd];
being speculatively executed. That's wrong for the same reasons
why it's wrong in close_fd()/file_close_fd_locked(); the same
solution applies - array_index_nospec(fd, fdt->max_fds) could differ
from fd only in case of speculative execution on mispredicted path. |
In the Linux kernel, the following vulnerability has been resolved:
net, sunrpc: Remap EPERM in case of connection failure in xs_tcp_setup_socket
When using a BPF program on kernel_connect(), the call can return -EPERM. This
causes xs_tcp_setup_socket() to loop forever, filling up the syslog and causing
the kernel to potentially freeze up.
Neil suggested:
This will propagate -EPERM up into other layers which might not be ready
to handle it. It might be safer to map EPERM to an error we would be more
likely to expect from the network system - such as ECONNREFUSED or ENETDOWN.
ECONNREFUSED as error seems reasonable. For programs setting a different error
can be out of reach (see handling in 4fbac77d2d09) in particular on kernels
which do not have f10d05966196 ("bpf: Make BPF_PROG_RUN_ARRAY return -err
instead of allow boolean"), thus given that it is better to simply remap for
consistent behavior. UDP does handle EPERM in xs_udp_send_request(). |
In the Linux kernel, the following vulnerability has been resolved:
USB: serial: mos7840: fix crash on resume
Since commit c49cfa917025 ("USB: serial: use generic method if no
alternative is provided in usb serial layer"), USB serial core calls the
generic resume implementation when the driver has not provided one.
This can trigger a crash on resume with mos7840 since support for
multiple read URBs was added back in 2011. Specifically, both port read
URBs are now submitted on resume for open ports, but the context pointer
of the second URB is left set to the core rather than mos7840 port
structure.
Fix this by implementing dedicated suspend and resume functions for
mos7840.
Tested with Delock 87414 USB 2.0 to 4x serial adapter.
[ johan: analyse crash and rewrite commit message; set busy flag on
resume; drop bulk-in check; drop unnecessary usb_kill_urb() ] |
In the Linux kernel, the following vulnerability has been resolved:
mm/filemap: make MAX_PAGECACHE_ORDER acceptable to xarray
Patch series "mm/filemap: Limit page cache size to that supported by
xarray", v2.
Currently, xarray can't support arbitrary page cache size. More details
can be found from the WARN_ON() statement in xas_split_alloc(). In our
test whose code is attached below, we hit the WARN_ON() on ARM64 system
where the base page size is 64KB and huge page size is 512MB. The issue
was reported long time ago and some discussions on it can be found here
[1].
[1] https://www.spinics.net/lists/linux-xfs/msg75404.html
In order to fix the issue, we need to adjust MAX_PAGECACHE_ORDER to one
supported by xarray and avoid PMD-sized page cache if needed. The code
changes are suggested by David Hildenbrand.
PATCH[1] adjusts MAX_PAGECACHE_ORDER to that supported by xarray
PATCH[2-3] avoids PMD-sized page cache in the synchronous readahead path
PATCH[4] avoids PMD-sized page cache for shmem files if needed
Test program
============
# cat test.c
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/syscall.h>
#include <sys/mman.h>
#define TEST_XFS_FILENAME "/tmp/data"
#define TEST_SHMEM_FILENAME "/dev/shm/data"
#define TEST_MEM_SIZE 0x20000000
int main(int argc, char **argv)
{
const char *filename;
int fd = 0;
void *buf = (void *)-1, *p;
int pgsize = getpagesize();
int ret;
if (pgsize != 0x10000) {
fprintf(stderr, "64KB base page size is required\n");
return -EPERM;
}
system("echo force > /sys/kernel/mm/transparent_hugepage/shmem_enabled");
system("rm -fr /tmp/data");
system("rm -fr /dev/shm/data");
system("echo 1 > /proc/sys/vm/drop_caches");
/* Open xfs or shmem file */
filename = TEST_XFS_FILENAME;
if (argc > 1 && !strcmp(argv[1], "shmem"))
filename = TEST_SHMEM_FILENAME;
fd = open(filename, O_CREAT | O_RDWR | O_TRUNC);
if (fd < 0) {
fprintf(stderr, "Unable to open <%s>\n", filename);
return -EIO;
}
/* Extend file size */
ret = ftruncate(fd, TEST_MEM_SIZE);
if (ret) {
fprintf(stderr, "Error %d to ftruncate()\n", ret);
goto cleanup;
}
/* Create VMA */
buf = mmap(NULL, TEST_MEM_SIZE,
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (buf == (void *)-1) {
fprintf(stderr, "Unable to mmap <%s>\n", filename);
goto cleanup;
}
fprintf(stdout, "mapped buffer at 0x%p\n", buf);
ret = madvise(buf, TEST_MEM_SIZE, MADV_HUGEPAGE);
if (ret) {
fprintf(stderr, "Unable to madvise(MADV_HUGEPAGE)\n");
goto cleanup;
}
/* Populate VMA */
ret = madvise(buf, TEST_MEM_SIZE, MADV_POPULATE_WRITE);
if (ret) {
fprintf(stderr, "Error %d to madvise(MADV_POPULATE_WRITE)\n", ret);
goto cleanup;
}
/* Punch the file to enforce xarray split */
ret = fallocate(fd, FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE,
TEST_MEM_SIZE - pgsize, pgsize);
if (ret)
fprintf(stderr, "Error %d to fallocate()\n", ret);
cleanup:
if (buf != (void *)-1)
munmap(buf, TEST_MEM_SIZE);
if (fd > 0)
close(fd);
return 0;
}
# gcc test.c -o test
# cat /proc/1/smaps | grep KernelPageSize | head -n 1
KernelPageSize: 64 kB
# ./test shmem
:
------------[ cut here ]------------
WARNING: CPU: 17 PID: 5253 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128
Modules linked in: nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib \
nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct \
nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \
ip_set nf_tables rfkill nfnetlink vfat fat virtio_balloon \
drm fuse xfs libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 \
virtio_net sha1_ce net_failover failover virtio_console virtio_blk \
dimlib virtio_mmio
CPU: 17 PID: 5253 Comm: test Kdump: loaded Tainted: G W 6.10.0-rc5-gavin+ #12
Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024
pstate: 83400005 (Nzcv daif +PAN -UAO +TC
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
mm/shmem: disable PMD-sized page cache if needed
For shmem files, it's possible that PMD-sized page cache can't be
supported by xarray. For example, 512MB page cache on ARM64 when the base
page size is 64KB can't be supported by xarray. It leads to errors as the
following messages indicate when this sort of xarray entry is split.
WARNING: CPU: 34 PID: 7578 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128
Modules linked in: binfmt_misc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 \
nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject \
nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \
ip_set rfkill nf_tables nfnetlink vfat fat virtio_balloon drm fuse xfs \
libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 sha1_ce virtio_net \
net_failover virtio_console virtio_blk failover dimlib virtio_mmio
CPU: 34 PID: 7578 Comm: test Kdump: loaded Tainted: G W 6.10.0-rc5-gavin+ #9
Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024
pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : xas_split_alloc+0xf8/0x128
lr : split_huge_page_to_list_to_order+0x1c4/0x720
sp : ffff8000882af5f0
x29: ffff8000882af5f0 x28: ffff8000882af650 x27: ffff8000882af768
x26: 0000000000000cc0 x25: 000000000000000d x24: ffff00010625b858
x23: ffff8000882af650 x22: ffffffdfc0900000 x21: 0000000000000000
x20: 0000000000000000 x19: ffffffdfc0900000 x18: 0000000000000000
x17: 0000000000000000 x16: 0000018000000000 x15: 52f8004000000000
x14: 0000e00000000000 x13: 0000000000002000 x12: 0000000000000020
x11: 52f8000000000000 x10: 52f8e1c0ffff6000 x9 : ffffbeb9619a681c
x8 : 0000000000000003 x7 : 0000000000000000 x6 : ffff00010b02ddb0
x5 : ffffbeb96395e378 x4 : 0000000000000000 x3 : 0000000000000cc0
x2 : 000000000000000d x1 : 000000000000000c x0 : 0000000000000000
Call trace:
xas_split_alloc+0xf8/0x128
split_huge_page_to_list_to_order+0x1c4/0x720
truncate_inode_partial_folio+0xdc/0x160
shmem_undo_range+0x2bc/0x6a8
shmem_fallocate+0x134/0x430
vfs_fallocate+0x124/0x2e8
ksys_fallocate+0x4c/0xa0
__arm64_sys_fallocate+0x24/0x38
invoke_syscall.constprop.0+0x7c/0xd8
do_el0_svc+0xb4/0xd0
el0_svc+0x44/0x1d8
el0t_64_sync_handler+0x134/0x150
el0t_64_sync+0x17c/0x180
Fix it by disabling PMD-sized page cache when HPAGE_PMD_ORDER is larger
than MAX_PAGECACHE_ORDER. As Matthew Wilcox pointed, the page cache in a
shmem file isn't represented by a multi-index entry and doesn't have this
limitation when the xarry entry is split until commit 6b24ca4a1a8d ("mm:
Use multi-index entries in the page cache"). |
In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Return error if block header overflows file
Return an error from cs_dsp_power_up() if a block header is longer
than the amount of data left in the file.
The previous code in cs_dsp_load() and cs_dsp_load_coeff() would loop
while there was enough data left in the file for a valid region. This
protected against overrunning the end of the file data, but it didn't
abort the file processing with an error. |
In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Validate payload length before processing block
Move the payload length check in cs_dsp_load() and cs_dsp_coeff_load()
to be done before the block is processed.
The check that the length of a block payload does not exceed the number
of remaining bytes in the firwmware file buffer was being done near the
end of the loop iteration. However, some code before that check used the
length field without validating it. |
In the Linux kernel, the following vulnerability has been resolved:
tcp_metrics: validate source addr length
I don't see anything checking that TCP_METRICS_ATTR_SADDR_IPV4
is at least 4 bytes long, and the policy doesn't have an entry
for this attribute at all (neither does it for IPv6 but v6 is
manually validated). |
In the Linux kernel, the following vulnerability has been resolved:
ice: Fix improper extts handling
Extts events are disabled and enabled by the application ts2phc.
However, in case where the driver is removed when the application is
running, a specific extts event remains enabled and can cause a kernel
crash.
As a side effect, when the driver is reloaded and application is started
again, remaining extts event for the channel from a previous run will
keep firing and the message "extts on unexpected channel" might be
printed to the user.
To avoid that, extts events shall be disabled when PTP is released. |
In the Linux kernel, the following vulnerability has been resolved:
mm: avoid overflows in dirty throttling logic
The dirty throttling logic is interspersed with assumptions that dirty
limits in PAGE_SIZE units fit into 32-bit (so that various multiplications
fit into 64-bits). If limits end up being larger, we will hit overflows,
possible divisions by 0 etc. Fix these problems by never allowing so
large dirty limits as they have dubious practical value anyway. For
dirty_bytes / dirty_background_bytes interfaces we can just refuse to set
so large limits. For dirty_ratio / dirty_background_ratio it isn't so
simple as the dirty limit is computed from the amount of available memory
which can change due to memory hotplug etc. So when converting dirty
limits from ratios to numbers of pages, we just don't allow the result to
exceed UINT_MAX.
This is root-only triggerable problem which occurs when the operator
sets dirty limits to >16 TB. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: restrict NL80211_ATTR_TXQ_QUANTUM values
syzbot is able to trigger softlockups, setting NL80211_ATTR_TXQ_QUANTUM
to 2^31.
We had a similar issue in sch_fq, fixed with commit
d9e15a273306 ("pkt_sched: fq: do not accept silly TCA_FQ_QUANTUM")
watchdog: BUG: soft lockup - CPU#1 stuck for 26s! [kworker/1:0:24]
Modules linked in:
irq event stamp: 131135
hardirqs last enabled at (131134): [<ffff80008ae8778c>] __exit_to_kernel_mode arch/arm64/kernel/entry-common.c:85 [inline]
hardirqs last enabled at (131134): [<ffff80008ae8778c>] exit_to_kernel_mode+0xdc/0x10c arch/arm64/kernel/entry-common.c:95
hardirqs last disabled at (131135): [<ffff80008ae85378>] __el1_irq arch/arm64/kernel/entry-common.c:533 [inline]
hardirqs last disabled at (131135): [<ffff80008ae85378>] el1_interrupt+0x24/0x68 arch/arm64/kernel/entry-common.c:551
softirqs last enabled at (125892): [<ffff80008907e82c>] neigh_hh_init net/core/neighbour.c:1538 [inline]
softirqs last enabled at (125892): [<ffff80008907e82c>] neigh_resolve_output+0x268/0x658 net/core/neighbour.c:1553
softirqs last disabled at (125896): [<ffff80008904166c>] local_bh_disable+0x10/0x34 include/linux/bottom_half.h:19
CPU: 1 PID: 24 Comm: kworker/1:0 Not tainted 6.9.0-rc7-syzkaller-gfda5695d692c #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
Workqueue: mld mld_ifc_work
pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __list_del include/linux/list.h:195 [inline]
pc : __list_del_entry include/linux/list.h:218 [inline]
pc : list_move_tail include/linux/list.h:310 [inline]
pc : fq_tin_dequeue include/net/fq_impl.h:112 [inline]
pc : ieee80211_tx_dequeue+0x6b8/0x3b4c net/mac80211/tx.c:3854
lr : __list_del_entry include/linux/list.h:218 [inline]
lr : list_move_tail include/linux/list.h:310 [inline]
lr : fq_tin_dequeue include/net/fq_impl.h:112 [inline]
lr : ieee80211_tx_dequeue+0x67c/0x3b4c net/mac80211/tx.c:3854
sp : ffff800093d36700
x29: ffff800093d36a60 x28: ffff800093d36960 x27: dfff800000000000
x26: ffff0000d800ad50 x25: ffff0000d800abe0 x24: ffff0000d800abf0
x23: ffff0000e0032468 x22: ffff0000e00324d4 x21: ffff0000d800abf0
x20: ffff0000d800abf8 x19: ffff0000d800abf0 x18: ffff800093d363c0
x17: 000000000000d476 x16: ffff8000805519dc x15: ffff7000127a6cc8
x14: 1ffff000127a6cc8 x13: 0000000000000004 x12: ffffffffffffffff
x11: ffff7000127a6cc8 x10: 0000000000ff0100 x9 : 0000000000000000
x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000
x5 : ffff80009287aa08 x4 : 0000000000000008 x3 : ffff80008034c7fc
x2 : ffff0000e0032468 x1 : 00000000da0e46b8 x0 : ffff0000e0032470
Call trace:
__list_del include/linux/list.h:195 [inline]
__list_del_entry include/linux/list.h:218 [inline]
list_move_tail include/linux/list.h:310 [inline]
fq_tin_dequeue include/net/fq_impl.h:112 [inline]
ieee80211_tx_dequeue+0x6b8/0x3b4c net/mac80211/tx.c:3854
wake_tx_push_queue net/mac80211/util.c:294 [inline]
ieee80211_handle_wake_tx_queue+0x118/0x274 net/mac80211/util.c:315
drv_wake_tx_queue net/mac80211/driver-ops.h:1350 [inline]
schedule_and_wake_txq net/mac80211/driver-ops.h:1357 [inline]
ieee80211_queue_skb+0x18e8/0x2244 net/mac80211/tx.c:1664
ieee80211_tx+0x260/0x400 net/mac80211/tx.c:1966
ieee80211_xmit+0x278/0x354 net/mac80211/tx.c:2062
__ieee80211_subif_start_xmit+0xab8/0x122c net/mac80211/tx.c:4338
ieee80211_subif_start_xmit+0xe0/0x438 net/mac80211/tx.c:4532
__netdev_start_xmit include/linux/netdevice.h:4903 [inline]
netdev_start_xmit include/linux/netdevice.h:4917 [inline]
xmit_one net/core/dev.c:3531 [inline]
dev_hard_start_xmit+0x27c/0x938 net/core/dev.c:3547
__dev_queue_xmit+0x1678/0x33fc net/core/dev.c:4341
dev_queue_xmit include/linux/netdevice.h:3091 [inline]
neigh_resolve_output+0x558/0x658 net/core/neighbour.c:1563
neigh_output include/net/neighbour.h:542 [inline]
ip6_fini
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
ice: Don't process extts if PTP is disabled
The ice_ptp_extts_event() function can race with ice_ptp_release() and
result in a NULL pointer dereference which leads to a kernel panic.
Panic occurs because the ice_ptp_extts_event() function calls
ptp_clock_event() with a NULL pointer. The ice driver has already
released the PTP clock by the time the interrupt for the next external
timestamp event occurs.
To fix this, modify the ice_ptp_extts_event() function to check the
PTP state and bail early if PTP is not ready. |
In the Linux kernel, the following vulnerability has been resolved:
pinctrl: fix deadlock in create_pinctrl() when handling -EPROBE_DEFER
In create_pinctrl(), pinctrl_maps_mutex is acquired before calling
add_setting(). If add_setting() returns -EPROBE_DEFER, create_pinctrl()
calls pinctrl_free(). However, pinctrl_free() attempts to acquire
pinctrl_maps_mutex, which is already held by create_pinctrl(), leading to
a potential deadlock.
This patch resolves the issue by releasing pinctrl_maps_mutex before
calling pinctrl_free(), preventing the deadlock.
This bug was discovered and resolved using Coverity Static Analysis
Security Testing (SAST) by Synopsys, Inc. |
In the Linux kernel, the following vulnerability has been resolved:
ftruncate: pass a signed offset
The old ftruncate() syscall, using the 32-bit off_t misses a sign
extension when called in compat mode on 64-bit architectures. As a
result, passing a negative length accidentally succeeds in truncating
to file size between 2GiB and 4GiB.
Changing the type of the compat syscall to the signed compat_off_t
changes the behavior so it instead returns -EINVAL.
The native entry point, the truncate() syscall and the corresponding
loff_t based variants are all correct already and do not suffer
from this mistake. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: fully validate NFT_DATA_VALUE on store to data registers
register store validation for NFT_DATA_VALUE is conditional, however,
the datatype is always either NFT_DATA_VALUE or NFT_DATA_VERDICT. This
only requires a new helper function to infer the register type from the
set datatype so this conditional check can be removed. Otherwise,
pointer to chain object can be leaked through the registers. |
In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gt: Fix potential UAF by revoke of fence registers
CI has been sporadically reporting the following issue triggered by
igt@i915_selftest@live@hangcheck on ADL-P and similar machines:
<6> [414.049203] i915: Running intel_hangcheck_live_selftests/igt_reset_evict_fence
...
<6> [414.068804] i915 0000:00:02.0: [drm] GT0: GUC: submission enabled
<6> [414.068812] i915 0000:00:02.0: [drm] GT0: GUC: SLPC enabled
<3> [414.070354] Unable to pin Y-tiled fence; err:-4
<3> [414.071282] i915_vma_revoke_fence:301 GEM_BUG_ON(!i915_active_is_idle(&fence->active))
...
<4>[ 609.603992] ------------[ cut here ]------------
<2>[ 609.603995] kernel BUG at drivers/gpu/drm/i915/gt/intel_ggtt_fencing.c:301!
<4>[ 609.604003] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
<4>[ 609.604006] CPU: 0 PID: 268 Comm: kworker/u64:3 Tainted: G U W 6.9.0-CI_DRM_14785-g1ba62f8cea9c+ #1
<4>[ 609.604008] Hardware name: Intel Corporation Alder Lake Client Platform/AlderLake-P DDR4 RVP, BIOS RPLPFWI1.R00.4035.A00.2301200723 01/20/2023
<4>[ 609.604010] Workqueue: i915 __i915_gem_free_work [i915]
<4>[ 609.604149] RIP: 0010:i915_vma_revoke_fence+0x187/0x1f0 [i915]
...
<4>[ 609.604271] Call Trace:
<4>[ 609.604273] <TASK>
...
<4>[ 609.604716] __i915_vma_evict+0x2e9/0x550 [i915]
<4>[ 609.604852] __i915_vma_unbind+0x7c/0x160 [i915]
<4>[ 609.604977] force_unbind+0x24/0xa0 [i915]
<4>[ 609.605098] i915_vma_destroy+0x2f/0xa0 [i915]
<4>[ 609.605210] __i915_gem_object_pages_fini+0x51/0x2f0 [i915]
<4>[ 609.605330] __i915_gem_free_objects.isra.0+0x6a/0xc0 [i915]
<4>[ 609.605440] process_scheduled_works+0x351/0x690
...
In the past, there were similar failures reported by CI from other IGT
tests, observed on other platforms.
Before commit 63baf4f3d587 ("drm/i915/gt: Only wait for GPU activity
before unbinding a GGTT fence"), i915_vma_revoke_fence() was waiting for
idleness of vma->active via fence_update(). That commit introduced
vma->fence->active in order for the fence_update() to be able to wait
selectively on that one instead of vma->active since only idleness of
fence registers was needed. But then, another commit 0d86ee35097a
("drm/i915/gt: Make fence revocation unequivocal") replaced the call to
fence_update() in i915_vma_revoke_fence() with only fence_write(), and
also added that GEM_BUG_ON(!i915_active_is_idle(&fence->active)) in front.
No justification was provided on why we might then expect idleness of
vma->fence->active without first waiting on it.
The issue can be potentially caused by a race among revocation of fence
registers on one side and sequential execution of signal callbacks invoked
on completion of a request that was using them on the other, still
processed in parallel to revocation of those fence registers. Fix it by
waiting for idleness of vma->fence->active in i915_vma_revoke_fence().
(cherry picked from commit 24bb052d3dd499c5956abad5f7d8e4fd07da7fb1) |